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[Text] Annotation. This collection of articles contains the results of theoretical
and experimental investigations of surface, barotropic and internal waves arising

in the ocean under the influence of periodic, moving and pulsed disturbances.

These disturbances are wind, pressure formations, barotropic waves and submarine
earthquakes. The articles discuss the dependence of the characteristics of wave pro-
cesses on the parameters of the operative forces, sea medium and bottom relief.

The collection is intended for specialists in the field of marine physics and hy-
drodynamics. )

Preface. The Second Seminar of Directors and Participants in the Interdepartmental
Project "Volna" ["Wave"] was held in Sevastopol' during the period 26-30 November
1979 at the Marine Hydrophysical Institute of the Ukrainian Academy of Sciences.
The theme of the seminar was: "Theoretical and Experimental Investigations of Sur-
face and Internal Waves in the Ocean.”

The organizers of this meeting of scientists were the Scientific Council of the
USSR State Committee on Science and Technology on the Problem "Study of the Oceans
and Seas and Use of Their Resources," the Commission on the Problem of the World
Ocean of the USSR Academy of Sciences Presidium and the Marine Hydrophysical Inst-
itute of the Ukrainian Academy of Sciences as the coordinating organization of
the "Volna" project.

The seminar was attended by specialists of the Marine Hydrophysical Institute of
the Ukrainian Academy of Sciences, the Institute of Oceanology of the USSR Academy
of Sciences, Acoustics Institute, Moscow State University, Hydromechanics Institute
of the Ukrainian Academy of Sciences, Central Scientific Research Institute imeni
A. N. Krylov, Soyuzmorniiproyekt, Institute of Applied Physics of the USSR Academy
of Sciences, Northern Caucasus Scientific Center of Institutes of Higher Educa-
tion, Siberian Department of the USSR Academy of Sciences, Far Eastern Scientific
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Center of the USSR Academy of Sciences, State Committee on Hydrometeorology and
Environmental Monitoring of the USSR Council of Ministers and a number of other
organizations.

More than 70 scientific reports were presented and discussed. These dealt with
the present-day status of theoretical and experimental investigations of wave
processes in the ocean and timely directions in work in this field during 1981-
1985. There was a scicntific discussion of a broad range of questions relating to
study of wind waves, mathematical modeling of the processes of generation and
propagation of surface and internal waves in the open ocean and in the coastal
zone, experimental investigation of internal waves under in situ and laboratory
conditions.

The work of the seminar transpired in plenary and section meetings in two sec-
tions: surface and internal waves. The participants in the meeting expressed an
interest in holding a scientific conference in 1980 and the publication of a
specialized collection of articles.

The collection of articles contains presentations of studies presented at the sem-
inar and devoted to theoretical and experimental investigations of surface and in-
ternal waves generated in the ocean by periodic, pulsed and moving disturbances.

The first section includes articles which examine surface and long waves arising
in a barotropic ocean. The diffraction of waves by spatial inhomogeneities of bot-
tom relief is studied; the influence of the velocity shear of sea currents on
three-dimensional waves generatea by a moving pressure region 1s investigated; com-
putations of the distributions of orbital velocities of wind waves are given; the
role of the ice cover in the process of propagation of flexural-gravitational
waves 1s analyzed. In the case of long waves a study is made of the generation of
seismic waves during the movement of tsunamis in a basin of variable depth, tsu-
nami waves are analyzed on the basis of observational data in the neighborhood of
Iturup Island, evolution of axisymmeiric disturbances is studied, and the influ-
ence of viscosity and the /3-effect on waves generated by periodic disturbances

in a basin of variable depth is investigated.

The second section of this collection includes articles which examine internal
waves., Long-period spatial internal waves arising from nonaxisymmetric initial
disturbances in the absence of a flow are analyzed; nonstationary short-period plane
internal waves in the presence of a flow with a sharp change in velocity are stud-
ied; the distorting influence of fine stratification on free and forced waves is
investigated; an evaluation of the possible values of elements of internal waves

in the zone of the southern polar front is given; the variability of the energy
density of internal waves with depth 1s considered; the influence of viscosity

on wave processes in the stratified ocean is analyzed.
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SURFACE WAVES

SOME PROBLEMS IN WAVE DIFFRACTION AND SCATTERING BY SPATIAL INHOMOGENEITIES IN
OCEAN AND ATMOSPHERE

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 7 Jun 80) pp 7-18

[Article by I. T. Selezov]

[Text] Abstract: The problems of the theory of
waves are considered when axisymmetric in-
homogeneities are present. Some precise
solutions are found and the methods of gen-
eralized power series and approuimation of

= solutions by polynomials are set forth.

The diffraction of waves in the broad sense is the deviation of wave movements
from the laws of geometrical optics. This phenomenon is generated when the medium
- contains some inhomogeneities localized or distributed in space.

As is well known, the application of rigorous methods of mathematical physics to
solution of the problems of wave propagation, diffraction and scattering is lim-
ited and belongs to classical problems. Recently approximate analytical and numer-
jcal methods are being developed [1, 4, 6-9, 11-15].

1. Introduction. The classical problem of the theory of nonstationary diffraction
is formulated in the following way [5]. Assume that some closed region R with

the boundary O R 1is stipulated in the regicn Q, oriented in a rectangular Cartes-
ian coordinate system x, ¥y, z and a plane wave is propagated along the Ox-axis (Fig.
1). Then the diffraction problem is reduced to the Cauchy problem or the boundary-
value problem for an equation in partial derivatives (or system of equatioms) in
the Q region, whose coefficients experience discontinuities of the first kind on
the JR surface. The g R surface is characterized by a curvilinear coordinate sys-
tem.

We will assume that the field in the external region Q is described by the wave
equation for the function ¥ (x, y, z, t)

(v 385 / -7 .
3
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Fig. 1.
The 4 function is represented in the form of the sum of tle incident 4 and the
scattered 4  fields ¢¥= @, + Ys, where ¢4(x,0,0,t) = F(x + ct).
We will assume that at the time t = O the leading edge of the wave touches the JR

surface. This 1s equivalent to the following:. for the sought-for function ¢ and
its derivative t the following initial conditions are stipulated

¢ | 0o -;”.;’,Ib.a -0, - qeH (;;-x)ﬁ<x+ct). (1.2)

- The boundary-value conditions in the simplest variant have the form of Dirichlet
or Neumann conditions

s
4= 3,%'54’=0' ' (1.3)

In addition, the solution must satisfy the attenuation.c_pndition at infinity.

After the substitution of & = @+ ‘Ps into (1.1)-(1.3) we obtain a homogeneous
equation relative to lfs, since ¢; satisfies the wave equation, and inhomogeneous
houndary-value conditions, since Y4 is a stipulated function.

Scattered and incident fields .in diffraction problems are described in differont
coordinate systems. Accurdingly, one of the fields must be restructured into
another coordinate system, which is not a simple problem. )

Depending on the properties of the R region, which in diffraction theory is call-
ed an inhomogeneity, obstacle, scatterer or diffracting body, it is possible to
distinguish three cases: ideally reflecting or translucent body, the field does
not enter into the R region; transparent object whose properties are different

4
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from the surrounding medium, but are constant, that is, in the R region are not
dependent on space coordinates; an arbitrary inhomogeneity whose properties in
the R region are dependent on the space coordinates. In the two latter cases, in
addition to the external problem, it is also. necessary to solve the internal prob-
lem.

The first case includes: absolutely rigid body in an acoustic field, ideally con-
ducting in an electromagnetic field and a vertical cylinder (junction) protruding
above the free surface in the field of surface gravitational waves. As an example
for the second and third cases we can use an underwater projection with a constant
or variable depth (Fig. 2) in the field of surface gravitational waves.

If the function { is represented in the form of a monochromatic travelling wave

_ (hrwt) W
4, =y, e . =7 (1.4)
we obtain the stationary diffraction problem. It is assumed that -oco<t<oo. The
sought-for function, in accordance with (1.4) can be cited in the form

g (v, 12, z‘) g (x v.2) e’ wt a.5)

The stationary diffraction problem is formulated on the basis of (1. l), (1.5) in
the form of a boundary-value problem for the Helmheltz equation

(v +A’)q=ﬂ. (1.6)
As before the solution is represented by the sum (-f— 30 + 91. The boundary-value

conditions are similar for JR. In addition, in order t:o ensure uniqueness of the
solution we introduce the radiation condition and the condition of limitation at

- infinity -- the Sommerfeld conditions. They have the form in three- and two-dimen-
sional cases
. 75 .~ 7]
bim r(———— zh/\=0 lim\fr (i—-uf é’cmq-ﬂ

v

2. Formulations of some problems. We will examine an axisymmetric inhomogeneity
whose center is matched with the origin of cylindrical (r, §, z) and spherical (r,
8, ¢) coordinate systems: f = f(r), Ogrgry. Outside the inhomogeneity r >rq the
properties of the medium are constant.

A plane monochromatic wave travels from infinity; it partially bypasses the ob-
stacle, is partially reflected and partially passes through the inhomogeneity,
being refracted (Fig. 2).

Within the framework of a long-wave approximation, for a wave in water the problem

is formulated relative to the velocity potential ¢ ., In the region of variable
depth H = H(r) we obtain the differential equation [9]
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— HF) = e 22 (7 '
7 [/:/(:) 7 V(x.t)] - (:,,‘ agt(z"~i)_=0, d<rern. 2.1

in the region of constant depth

2 /
V(fz—

ﬁz‘n’z Vi o 2_
g oy, r>r, =84
o o T @2

In the case of an acoustic medium we obtain differential equations in the region

of variable density PO = Po(r) [9]

- 7 o = ; a%p(R.t)
P ()T [y VAR g a0 TR @

and in the region of constant density
pip - Lo Ll =0, =1 (2.4)

The propagation of electromagnetic waves in an inhomogeneous medium is described

by the Maxwell equations_[9] )

o - T . o . 8 =F.,
BT e T Tmgyy TaEneg e TER0 0D

In a general case of an anisotropic medium the vectors T{-)and B,
collinear and are related by the material equations (summing for j]

‘ y= ey E 4=pg (D Ji= 0y (DE -
- In the case of plasma inhomogeneities in the atmosphere it _is possible to consider
an isotropic medium with the following properties: &= & (x), 1= const, 6 = const.
The system of equations (2.5) can be reduced to two hyperbolic "decision" equations
in the region of the inhomogeneous medium: .
PN AR . Y PSR
vE - .(.7‘5).7. F!—:.—-” = 0. . (2.6)

-
and D are non-
)

cAx) g?t." . .
Y. SO SRR LA
2% - vﬂ'._...i,,,. 5.2 e ok
2 where c“(x) = 1/pe(x). 6"(7) d""'::’ /‘ ™ + [V (T)Jn -_-it" n'-‘tp'
In the case of a uniform medium from (2.6) we obtain wave equations relative to l?

and T‘l’

The formulation of the diffraction problem in each of the cited cases includes:
s‘tipulation of the incident field, which we use in the form of a plane, arriving
from infinity, traveling wave which in an acoustic case has the form

)’2 - pe i) o P

l‘('fz"foda.*ﬂl‘)' 2.7)

where k2 =uJ/c0, A is the angle between the x-axis and the radius-vector of the
moving coordinate; the conditions for the coupling of the sought-for functioms
and their derivatives at the discontinuity of the homogeneous and inhomogeneous
media are stipulated. In the case of a spherical or cylindrical inhomogeneity they
have the form

6
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L _ap :
,/’lr.»,'P:lm- ""('Sdr Ir-r"ar ”"‘-' (2.8)

the Sommerfeld radiation conditions (1.7).

In an investigation of waves on water within the framework of a long-wave approx-
imation the coupling conditions for ¢ are similar to (2.8). For electromagnetic
waves at the discontinuity of media we obtain the conditions

(F- 57 7=0, (p’— b7 )n -0,

(/7’-/73)171'- 0, E'-F)xx

3. Precise solutions. In all formulations the problems of diffraction of mono-
chromatic waves are reduced to solution of the Helmholtz equation with variable
coefficients. For inhomogeneities with cylindrical and spherical symmetry it is
possible to use the method of separation of variables, which leads to an investi-
gation of an ordinary differential equation with variable coefficients. In some
special cases this equation allows the formulation of precise solutions.

(2.9)

For example, for the problem of diffraction of acoustic waves (1.7), (2.3), (2.4),
(2.7), (2.8) we obtain solutions in the external region r >1g

o0
: g e
Py=p* Py = Z [c;n ) ’”],” (’fz")"'am/’/n )<,fzr)]£odm5 (3.1)
meld
and in the internal region
- - .
p= Z b R (P05 mE (3.2)
where Ry is a solution of the equation in the region r<g Tos
K, 17 N
a’ [___E.(PZ] a’/f’z _._[ (7_)__]/‘, ==ﬂ (3.3)
dr? o 17y
Here Jm(Z ) and H,ﬁz)(z ) are cylindrical Bessel and Hankel functions; £ and By

are unknown coefficients which are determined from the coupling conditions (2.8)
after the substitution of (3.1) and (3.2) in them. Equation (3.3) allows two class-
es of precise solutions. With P n(r) = Ae™ar, c2 (r) = €5 = const, A = const, a =
const the solutlon is expressed gn degenerat:e hypergeometric functions 1F1(O( ﬂ
¥) with a2 == 4 ko2, =

-=/’z<\/az 44}2) RS pmi@r Not-44f )r/z .
f <m+2-+}——;——-—— ,._:_.47_2 2m+/, \/a —44’)

In the case a’ = 4 kg the solution is written in Weber functlons

A’,n—e a" ¢ (\/Zar)

For inhomogeneities of the type

Pu(r) =Ar% GF(my =it p

7
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we obtain a solution in Bessel functions J (Z ) with o == =2
a2 g (e (2402 N vz vyw AV TSRS
o= 920, (e V) 0= KT [ (24
R, = n(#=2 /2 S g =2 //+/7z2—,f,2 .

Similar solutions were obtained for the problems of diffraction of surface gravi-
tational waves (1.7), (2.1), (2.2), 2.7), (2.9 19].

N with & = -2

4. Approximate solutions. In the case of arbitrary axisymmetric inhomogeneities
which are approximated by power-law polynomials or are stipulated at once in such
a form the problems are reduced to solution of an equation in the form

x’r"+<i a; x")xr'«-(iﬁn x”) y:é. - 1)
A=y : el

We will assume that this equation satisfies the Fuchs theorem [10] (v = y(x); ag,
b, are known coefficients). According to the method of generalized power series

(Frobenius method) the solution is represented in the form of a convergent gener-
alized power seriles i

&

3 n |
ym &7 Yy x (4.2)
n=f

where the Y and Oln values are determined from the récurrent relationships, which
follow from (4.1) after the substitution of (4.2). This method is conveniently

used in complex problems, but it is characterized by slow convergence of series
in the form (4.2). '

The method of approximation of solutions by algebraic polynomials is more effec-
tive. These are selected from the condition of a best approximation for the norm
in the space of piecewise-continuous functions C.

We will examine an equation with polynomial coefficients ag(x), aj(x), az(x) [2,3]

) . , N .
a,(x) +a7(x)7 +a, (x)-” =0
and we will assume that the degree of each of the polynomials ag; does not exceed

the number £+ 1 - s. We will demonstrate that it is equivalent to the Volterra
equation of the second kind in the interval [a, D]

y(x)= \f !&ﬁ_ y(€)d¢ +-ﬂ'x‘2— ’

)
227(x) al(x) (4.3)
L1

where ay —~ is a polynomial of a degree not higher than £+ 1; Pl(x,é‘) is a poly-
nomial in the variables x and & not exceeding the number £ :

B68) = 20086 -8) lale 3G > 2 =T oy 15
i

8
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FO)=a,(a) y+ (x—a){ao(a) o+ [a,(p)—a.’(a)]g }-.,f,+]£2x .

For finding an approximate solution yp(x) of the integral equation (4.3) we sub-
stitute for it an operator equation in the form

. I
4
My 0 =f 8 ) @) der £ - €, (), o
a
_ where |
n —._——. e+’ & . { '
0= gx i @ = ) e K
_ =0 ’:-”: .
£+ A ¢ .
_ - \ (n+ ) /
_ 7'7,~xa);7-_)“2_= 8y x’.
Cn(x) ; nsé ‘nte \ £ Al J—E} 7 /

Here Ty ( /) are Chebyshev polynomials; fn+i are auxiliary parameters.

Equating the coefficients with identical powers of x, we obtain a system of n + b+
2 linear algebraic equations for determining the coefficients c; and fn+i' For
evaluating the deviation of the approximate solution yn(x) of the equation from the
precise solution the following is correct: ST : .

. .-
- R - - — t’./ - j‘ P (X, ) ‘ d¢
/

Y (&) =7, (x) éj—< T . )g” ao(x) .

~ l ,_,/ ; I ﬂ.-v-z,

where
¢=min a,(x)
x € [a8]

The indicated method was tested in test problems and was applied to solution of a
number of wave diffraction problems [1, 13].

We will examine the problem of diffraction of surface gravitational waves on an

axisymmetric bstacle of variable depth H(r), 0<r<b (Fig. 2), which we will rep-
resent in the form of a polynomial of the degree N

V4
ﬂ(}’)-: Z /Z/z p” .
=0

Incident on the obstacle is a wave having the velocity potential
_ ik, reosBwd)
¢, =He""2

The velocity potential % in the region of variable depth 0Xr<b satisfies the
equation (long-wave approximation)
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, , , -
azq+[L+_/f_’r_rl]_di+_/__oi%+_/:L(,_ﬂ. 4.5)
art Lr Ky Lor Pt 368°  Hr) |

In the outer region r>b, where the fluid deth is constant, we obtain _

» i

gy L Ge L0 4ty =y (4.6)
irt  r dr r*agt 2

The solutions are joined together using the coupling conditions

7y 7y,
-
4 ‘r-l = 9 |lres? ar |r=f ar II--5 . 4.7)
"We will break down the region of variable depth into two regioms. In the region
0<r<a, where a is the minimum (in absolute value) root of the polynomial H(r),
the velocity potential ¢p; satisfies the equation (4.5) and a solution can be ob-
tained by the method of generalized power series or by some other method.

In the region a€<r<b the velocity potential also satisfies equation (4.5), but the
polynomial H(r) has a complex root, in absolute value less than b. In the region
r>b the velocity potential ‘Pz satisfies equation (4.6).

The solution of equation (4.5) in the region Ogr <a is written in the form of a
series : . . NG R SR DT :

"/=§ 8, Rory 05 mb, Rpyiry=r™ 5~ a0 r° (4.8)
m: 30

The solution in the region a€r<b is obtained by the method of approximation by
polynomials. From (4.5), after separation of variables, we obtain an equation of

the type o —
H(x)x¥y"+ [ﬂ(x) X+ xzﬂ'(x)] v'e [A‘zzxz-mz //(x)] y=0. (4.9)
Since in equation (4.4) ¢ is such a minimum whole number that with all s = 0, 1, 2
the degree of each of the polynomials ag(x) does not exceed the number B+ 1- 3,
we find { = N + 1. In this case
erl (x'ﬁ)"f,é;"' 92'5 "'ggz'i'g {x#—:_;-;-g_ ¢M'I+ "" (4.10)
v y et ® T Pond s
-m217 .
Ry, [2Kh+D) =m2 ] fmp2,4,..., ot
Vs (4.11)

kl (ﬂ-—m'zq- /rzz) ‘ A'—J‘

g - Ax (/+A'—/n2) , k=0,10.4,..., ¥,
W) \py(a+4t-m®),  g=2

f (—X_) = £+ fz X, /7;.2/7’ @) ;’7 ../7(4) 2’ s,
fz -='//(a)azd‘ -f//.(a)a J -
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The integral equation corresponding to (4.9) and the parameters entering into it
have the form (4.4) with the replacement £ = N + 1 and

Cwsy e ded
g (.x)-}f/z‘-x .
4

Taking into account (4.10), (4.11) and the expressions. for yn(x), aN'"z(x), £n(x)
from the above equation we obtain a system of n + N + 3 linear algeﬁmic equations
for determining the coefficients cj and the auxiliary parameters <Tp4)

U4 I Gfs -4 o2 ' . o
& e ST 8% £ pepys
i-ZR.,‘ ; 9z/w (ejr 2ok ; el Gy Fron* £ 0,/.‘ (4.12)
min(A-2,#) 2 — -
N N +
Cryos [/,‘, _m_-_&m_]., . - 8720,
(=max(QA-n-2) s A=1"1 jamax(, 4-n)
o2 dyee, R+ 1.
The final solution in the region a§r<b has the form
ey — R .
,,a_Z [fm %, (P2 + 85 Ypp (P) ) cOS mE. (4.13)

m=0
In the region r>b we obtain the solution

g, = Z a,: /fmm (k, r) cos m& .
o

(4.14)

After substitution of the solutions (4.8), (4.13) and (4.14) into coupling condi-
tions of the type (4.7) at two discontinuities we obtain a system of linear alge-
braic equations relative to the unknown coefficients ap, bp, d’m, In-

On the basis of the derived precise and approximate solutions we analyzed the in-
fluence of the degree of the determined inhomogeneity on the directional diagram.
and the scattering cross sections of acoustic, electromagnetic and surface grav-
itational waves [9]. Figure 3 shows an example of the total scattering cross sec-
tion Q in dependence on wave number ky = 257/ £ for a cylindrical density inhomo-
geneity Po(r) = P.+ 1 - Pc)rz, Pc = 3/2 in an acoustic medium. At the boun-
dary of the contact with the external medium r = 1 and Po = 1, at the center of
the inhomogeneity r = 0 and Pg = . = 3/2.

In Fig. 4 similar results are given for the scattering of electromagnetic waves
by an inhomogeneity of the dielectric constant £ , also changing. The cited cross
sections reveal extrema, which is of great interest for an analysis of the influ-
ence of inhomogeneities on wave propagation. From a comparison of solutions for
the averaged constant inhomogeneity (,00 or £ = const) and a real inhomogeneity

11
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f’o(r) or E£(r) it can be seen that a real inhomogeneity is characterized by less-

er total cross sections and can generate local resonances.

PE————— e e —————— - = R
-T i Exconst
§ 1 6
] E(r)
9 4
] /%4
5] 9
2.1 ‘
: I,
— — " v o . 8w % ¢
0 . & Fig. 3./6 2 4, Fig. 4. o

We note in conclusion that the characteristics of scattering of waves by inhomogen-
eities near a pldne boundary (in a semibounded region) can be obtained by the im-
ages method in the form of the sum of multiply scattered fields [5,6]. We also
note that for solution of problems of nonstationary wave defraction a method based
on the analytical derivation of a precise solution in the space of Laplacian time
images and with numerical transformation to the original is effective [7].

BIBLIOGRAPHY

Veselaya, 0. G. and Yakovlev, V. V,, "Approximation of Solution of Problems in
the Diffraction of Surface Gravitational Waves on an Axisymmetric Obstacle by
Polynomials," GIDROMEKHANIKA (Hydromechanies), 39, pp 51-57, 1979.

Dzyadyk, V. K., "Approximate Method for Approximating Solutions of Series of
Linear Differential Equations by Algebraic Polynomials," IZV. AN SSSR: SER.
MAT. (News of the USSR Academy of Sciences: Mathematical Series), 38, No 4, pp
937-967, 1974.

Dzyadyk, V. K., "Application of Linear Operators to an Approximate Solution

of Ordinary Differential Equations,” VOPROSY TEORII PRIBLIZHENIYA FUNKTSIY I

IKH PRILOZHENIYE (Problems in the Theory of Approximation of Functions and

‘Their Application), Kiev, pp 61-96, 1976.

Dotsenko, S. F. and Cherkesov, L. V., "Diffraction of a Surface Gravitational
Wave on a Small Irregularity on the Bottom,” PMM (Applied Mathematics and
Mechanics), 43, No 4, pp 639-646, 1979.

Selezov, I. T., "Diffraction of Waves on Convex Bodies in Semibounded Regions,"
PRIKL. MEKHANIKA (Applied Mechanics), 6, No 3, pp 38-46, 1970.

Selezov, I. T. and Krivonos, Yu. G., "Scattering of Acoustic Waves on a Cylin-
der in a Semibounded Region,'" GIDROMEKHANIKA, No 15, pp 99-106, 1969.

Selezov, I. T. and Tkachenko, V. A., "Investiyation of Unsteady Waves by the
Method of Numerical Inversion of the Laplace Transform,' TEORIYA DIFRAKTSII I
RASPROSTRANENIYA VOLN. 7-y VSESOYUZNYY SIMPOZIUM PO DIFRAKTSII I RASPROSTRAN-
ENIYU VOLN (Theory of Wave Diffraction and Propagation. Seventh All-Union Sym-
posium on Wave Diffraction and Propagation), Vol 3, Moscow, AN SSSR, pp 133-
136, 1977.

12

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

9.

10.

11.

12.

130

14.

15.

FOR OFFICIAL USE ONLY

Selezov, I. T. and Yakovlev, V. V., "Some Problems in the Diffraction of
Plane Waves on a Cylinder With a Variable Density," AKUST. ZHUR. (Acoustics
Journal), 23, No 6, pp 85-92, 1977.

Selezov, I. T. and Yakovlev, V. V., DIFRAKTSIYA VOLN NA SIMMETRICHNYKH NEODNO-
RODNOSTYAKH (Wave Diffraction on Symmetric Inhomogeneities), Kiev, "Naukova
Dumka," 1978, 146 pages.

Trikomi, F., DIFFERENTSIAL'NYYE URAVNENIYA (Differential Equations), Moscow,
IL, 1962, 352 pages.

Cherkesov, L. V., POVERKHNOSTNYYE I VNUTRENNIYE VOLNY (Surface and Intermal
Waves), Kiev, "Naukova Dumka,” 1973, 248 pages.

Cherkescv, L. V., GIDRODINAMIKA POVERKHNOSTNYKH I VNUTRENNIKH VOLN (Hydrody-
namics of Surfsce and Internal Waves), Kiev, "Naukova Dumka," 1976, 364 pages.

Yakovlev; V. V., "Approximation of. Solution of the Problem of Wave Diffraction
on an Arbitrary Inhomogeneity by Polynomials," PRIKL. MEKHANIKA (Applied Mech~
anics), 13, No 2, pp 40-47, 1976.

Garrison, C. J. and Rao, V. S., "Interaction of Waves With Submerged Objects,"
J. WATERW. HARBORS AND COAST ENG. DIV. PROC. AMER. SOC. CIV. ENG., 97, No 2,
pP 259-277, 1971.

Mei, Ch. C., "Numerical Methods in Water-Wave Diffraction and Radiation,"
ANNUAL REVIEW OF FLUID MECHANICS, Vol 10, pp 393-416, 1978.

13

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

FOR OFFICIAL USE ONLY

(

NONSTATIONARY THREE-DIMENSIONAL WAVES IN A FLOW OF HOMOGENEOUS FLUID WITH
VELOCITY SHEAR

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 28 Feb 80) pp 19-26

[Article by A. M. Suvoroir, A. N. Tananayev and L, V. Cherkesov]

[Text] Abstract: An analysis of the amplitude

characteristics of a three-dimensional

- wave trace caused by a region of atmo-
spheric pressure disturbances is given

. within the framework of linear theory.

- ’ . The current velocity gradient is assum-
ed to be constant with depth and the
fluid is assumed to be homogeneous.

In [1] the authors gave an asymptotic analysis of the pattern of development of
three-dimensional surface waves and numerical methods were- employed in studying
the dependence of limiting angles of the wave trace, phase portraits and velo-
cities of propagation of the leading edges of tramsverse and longitudinal waves on

- current velocity shear. Current velocity was assumed to be a linear function of
depth (U(z) = Uy + a(z + H)). The wave-forming effect of a ship was replaced by a
region of normal stresses moving at a censtant velocity. In this article we give
an investigation of the amplitude characteristics of wave movement.

The expression for deviation of the free surface of the fluid from an undisturbed
position in a coordinate system related to a moving reglon of normal stresses
has the form [1]

oo 2 » th _ist. _irReos(8-8),4
Z=__.'.M’_ Re SS __{'_i_:w (i-t’ 17 )E” cos( Idﬁdf‘,

2 D)
4 p 5 o 1)

where

J= @}’4- grehri )’/2; 6, =05 acosfthrh; Acrzgca.sﬁ-q-d}

X=feosy i y=Rsing ; mercos 8 n=prsinb;
U=+ V+ou: au=ahl;
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?(9, r) is the Fourier transform of a function even relative to x and y, describ-
ing the form of the imparted disturbance; V is the velocity of movement of a spa-
tially localized region of normal stresses. Due to the symmetry of z relative to y
we will limit ourselves to an investigation of the wave trace in the half-plane

0<¥<7].

The integrand in (1) has a pole with respect to O at the points

9!‘/: rH .

g (w,-amm/z
Analyzing then the internal integral with respect to U by the methods of the theory
of residues [1, 2], we obtain )

cos 20 = (2)

Z-— .._.p.‘..jm j”'x(’x(,.)effl(’:qﬂﬂ (R- )' 0<’<_2-_z.’ |
'4

7p (3)
| r£,.7)
= : N= 8~ H
0 U, rG— athrh) _ ress G-4)
9 thrH

91;15 a root of equation (2); -71/2 <91< 0 3 X(r) = 0 for the r value, satisfy-
ing the inequalities

gthrd > ¥ (U - athri) =0, V=i

X (r) = 1 for the remaining r values from the integration interval;

o-tf-/”z ; ‘),-.; 7'”' - 0,5az‘/zr'//
rY - athrf’

For computing the integral (3) from the rapidly éséillating function we use the
method described in [3]. Here the integral

] R
= § A2y e R az,

&
where R is a large real parameter; F(z), <P(z) are functions continuous together
with their derivatives to the third degree, represented in the following way:

(cos g -ctg 6, sin K

B I R "
I ' Y

where N is the number of reg%ons into which the integration segment is broken down
[0,1}: h = N-1; P(z) = Pk 27+ qpz + [k for [kh, (k + 1)h]. The quadrature formula
for the integral (4) has the form

, nes rhe form L B
#(pe 22 .
§ e A0 200 9 & @06, (pg) lF)+ 6 (m5050 )

where the coefficients Cg(py, q) (s = 1, 2, 3) are found from the expressions
cited in [3].
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In computing the integral (3) the upper finite limit was replaced by a finite value
which together with the h value was gelected on the basis of adjustment computa-
tions. The integration segment [a, b] with a = b was reduced to [0, 1] by the sub-
stitution r = a + (b - a)z.

All the computations of the form of the sea surface were made for a disturbance in
the form R

F(ar) = éx,o[—(h’; cy’)] ,

approximately modeling the wave-forming effect of moving.surface ships. The para-
meters of the problem were selected as follows: H = 20 m, ¢ = 9.81 m-sec'z, Uy =
13.2 m-sec™l, P 1024 kg'm™3, B = 0.005 w2, ¢ = 0.03 w2, p, = 2:10% Pa. All the
results of computations of wave profiles cited below can also be used for other

po values with the introduction of a constant conversion factor since py is the am-
plitude factor in expression (3).

Fig. 1.
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Fig. 2.

Figure 1 shows profiles of the wave-covered sea surface for y = 30 m, t = 25 sec
and three values of the current velocity shear

a-QOu=2mn-secl,
d-Au =0, B-Au = -2 m-sec™L,

The solid curves were constructed using formula (3); the dashed curves were con-
structed using the asymptotic expressions (2.3), (2.4) in [1], obtained from (3) by
the stationary phase method. In the middle part of all three figures the sea sur-
fice profiles described by the integral and asymptotes are virtually the same. At
the beginning and end of the profiles the differences in the form of the sea surface
increase. This result is attributable to the fact that in these regions we find the
boundaries of the limiting angles of the wave trace and the leading edges of the

17
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developing ship waves (Fig. 2 [1]), in whose neighborhood asymptotic behavior of
the type (2.3), (2.4) is not applicuble.

I v -
< o ’.(\.\.
NN\ > \
d ‘\,//mr/r’ A m\ —
~ . 7/
N/ et
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) ]
!
~
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Fig. 3.

Figure 2,a,b,c gives some idea concerning the form of the sea surface for a section
along y = (20+10&)m, /=0, 1,..., 7, t = 25 sec and the same current velocity
shears as in Fig. 1l,a,b,c. The scale along the z-axis is localized in the upper part
of the figure at the right; the computations for Figures 2, 3, 4 were made using
expression (3). The dashed curves show the regions of localizationm of the wave trace
constructed using the asymptotic expressions from [1]; the dot-dash curves represent
visually discriminated sectors with an angle ) in which the main wave disturbances
are actually concentrated. The asymptotes give exaggerated values of the area of re-
gions in which the main wave disturbances are situated (Fig. 2,b for Au = 0 and 2,c
for Au = -2 mesec-1); the positioning of the sector with the angle Xo relative to
the horizontal x-axis and the value of the Y 0 angle are virtually not dependent on
the current velocity shear (in all three cases JO ~18, J'Ox 9°).

~ Figure 3 illustrates profiles of the sea surface with t = 25 sec, y = 80 m (Fig.
3,a), y = 30 m (Fig. 3,b) and different values of the current velocity shear: Au

= 2 mesec—l —— solid curves, DAu = 0 -- dashed curves and Au = -2 mesec~l -- dot-
. dash curves. It can be seen that an increase in the difference in current velocit-
ies Au=-2-2 m-sec—l leads to a displacement of the wave crests in the direc-

tion of lesser values of the horizontal coordinate x. The height of the two most
positive crests for the profile for y = 80 m decreases by approximately a factor of
1.8-2; the height of the most positive crest for y = 30 m increases Insignificantly.

18
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Figure 4,a,b,c shows profiles of the sea surface for y = 50 m, illustrating the
- process of development of the wave pattern for different moments in time after onset
of operation of the source of disturbances: t = 10 sec -- dot-dash curves with two
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points, t = 15 sec —— dot-dash curves with one point, t = 20 sec -- dashed curves
and t = 50 sec —— solid curves. One of the interesting features of these results

is a more rapid arrival of the wave disturbances in a stationary regime for A u =
-2 mesec~} in comparison with the cases Au=0and 2 m-sec~l., Thus, with a change
{n t from 10 to 20 sec the height of the positive crest falling in the region of
values of the horizontal coordinate x somewhat exceeding 100 m really changes very
little for Au = -2 m-sec"l; for Au=0 and 2 m-seq‘l it increases by a factor of
approximately 1.6-1.7. This fact is also illustrated by the table, in which for y =
50 m and three current velocity shear values A u we have given the values of sea
surface deviation from a horizontal level.

Table 1

) a¢ u <2 weo~tmesec—l

25 S0 } 100 25 50 | 100

0,90 ] 0,97] 0,99 0,84 | 0,80 0,80
-I|°3 ﬂ”l -0'88 4,88 —0'9# -0.9#
0,94 | 0,88{ 0,89 0,93 | 0,92} 0,9
~0,78 |=0,95] -0,99 <0,85 |=0,81 | 0,61

It was noted in [1], with transformation from a double integral (1.8) for 9and r
to a single integral {(1.9) for r with integration limits from ry to + ©9, that
(1.9) is correct in the region of Vl values in which the inverse function r(¥j)
is unambiguous. Here rj is a root of the equation V= ;. We will examine this in
greater detail.

A numerical analysis of the Jl(r) function in the range of parameters of the prob-
lem for which computations were carried out in [1] indicated that for Au =0 and
2 mesec™l it decreases monotonically, with lim R v (r) = x. Accordingly, the in-
verse function will be monotonic and unambiguous. %urves of the R Vl(r) function in
the region of its determination for Au = -2 m-sec'lf and two es are represent-
ed in Fig. 5,a (y = 4 m) and Fig. 5,b (y = 12 m). Here R =v/x2 4+ y2 is not dependent
on r. Curves 1-3, 5 and 6 have a local minimum for small r values and a less con-
spicuous local maximum in the case of greater r values. The value of the function
at the point of the local maximum r* satisfied the condition RY 1(r*)> X, lim R ¥4

- (r) = x. Curve 4 is a monotonic function of r. rree

The values of the variable r which is used in integration in the single integral
must satisfy the condition V?VJ_. Then in the case of a monotonic function R y;(r)
the integration interval assumes the form [ 1, + ©0]. For the function R \ll(r) with
4 local maximum there can be a variant in which the integration interval is broken
down into two parts {rj, rp] U [r3 + o], where rj, r3 are roots of the equation
V= V.. This fact must be taken into account in a numerical analysis of the single
integral and in its computation by the stationary phase method since it 1s not ex-
cluded that the stationary points can fall in the interval [r2, r3].
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Summary

a) It has been established that for all the current velocity shear values used in
the computations the sea surface profiles constructed on the basis of asymptotic
formulas and using a more precise integral expression for all practical purposes
differ little from one another within the region delimited by the horizontal x-axis,
the leading edges of the developing waves and the boundaries of the limiting angles.
In the neighborhood of the region boundaries there are significant differences in
the form of the profiles.

b) The main wave disturbances are conce..crated in the sector between the rays drawn
at the angles ~ 9 and ~27° to the x-axis.

¢) The arrival of the wave disturbances in a stationary regime occurs more rapidly
for negative values of the current velocity shear.
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EFFECT OF CURRENT VELOCITY SHEAR ON AMPLITUDES OF WAVES GENERATED IN HOMOGENEOUS
FLUID BY MOVING PRESSURE REGION

Sevastopol' TEORETICHESKIYE T EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian (manuscript received 19 Jun 80) pp 27-35

[Article by V. F. Sannikov and L. V. Cherkesov]

[Text] Abstract: A study was made of the influence
of current velocity shear on the amplitudes
of waves generated by surface pressure dis-
turbances moving uniformly and linearly. It
is demonstrated that the shear of the transverse
velocity component ‘exerts a considerable influ-
ence on the phase configuration of the wave
trace and increases the maximum surface rises
of the fluid. The influence of current velocity
shear is most conspicuous with small velocit-
ies of movement of the disturbance.

_ The waves forming during the movement of pressures along the surface of a homogen-
eous fluid have been studied quite completely. The author of [6] for the first
time proposed a theory which describes the types of crests in a system of waves
forming on the surface of deep water during movement of a point pressure disturb-~
ance with a constant velocity. Then this theory was developed for a fluid of fin-
ite depth [6]. In [1] a study was made of .the development of waves arising during
movement of a region of surface pressures from a state of rest in a deep fluid of
finite depth.

The study of spatial waves generated by surface pressures in flows with a current

- velocity variable in depth began relatively recently. Steady waves in a fluid with
a current velocity profile which is linear and constant in direction were examined
in [7], and unsteady waves were examined in [2]. The influence of a change in cur-
rent velocity and its direction with depth on the structure and geometry of the
wave trace was investigated in [3]. It was found that allowance for the vertical
inhomogeneity of a current leads to some qualitatively new effects in the system
of waves arising beyond the region of pressures. In the case of great current velo-
city drops with depth even in a plane flow the structure of the wave trace differs
substantially from the well-known ship waves and as a result of change in the
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direction of current velocity with depth at the surface of the fluid the wave trace
is deformed in a definite way and becomes asymmetric. This article represents a
continuation of the investigations begun earlier in [3]. A study is made of the
influence of current velocity shear on the amplitudes of waves generated by atmo-
spheric pressures moving linearly and uniformly relative to the surface of a fluid.
It is postulated that the current velocity components change linearly with depth.

1. Assume that VO = (ug, vg, O) is the velocity of the undisturbed flow of a fluid
of the depth H; u, and vg are linear functions of the vertical coordinate z. As a
convenience we wi?l assume that Vo(z) is the sum of current velocity and the velo-
city of pressure movement. The coordinate system was selected in such a way that
its origin was situated on the undisturbed free surface, the z-axis is directed
vertically upward and the direction of the v, (0) vector coincides with the positive
direction of the Ox-axis. A pressure in the form

p==pof(27) - @
is imparted to the free surface.

In [3] a solution was obtained for} -- rises of the free surface in the form of
double, single integrals and asymptotic formulas not containing integrals. In the
investigation of the dependence of wave amplitudes on the current parameters the
computations were made using formulas containing single integrals. The computation
of double integrals requires great expenditures of computer time and the asymptotic
formulas not containing integrals are not uniformly suitable. In addition, it was
assumed that the time elapsing from the onset of pressures (1) is quite great and
movement can be considered steady. Computations of the rise of the free surface
were made using the formula

_—2§ 3?"; ("‘”’ b, 22 5”‘) sin [y 03 Gp 2 3508 ¢ g gl (2)
p//czx H H V¢ Zrearxrcth g

mwl 7

where P is fluid density
c=U, (0) ; ;{-yic‘z ) Q= ((.?)'7‘1—37(1‘ ; ﬁ:(];;e)_'d—‘:- v, §

- g is the acceleration of gravity; x; = x/H; y; = y/H; R = \/x_lz +y1%; f is a Four-
ier transform of the function f(x,y%;

o, =arctgl- 0oy NI« x rcthr)

rg is the minimum of all r 20 for which the integrand in (2) is nonnegative; X =
1, if (-1)™(sin By x] - cos By y1)>0 and x5 = O in the opposite case. The computa-
tions were made for the function

ol 22T Z0)m L[~ L(a ’-iid’o L3
£ " 2744 m[ 2a? zé‘]‘f’u‘) z wl 7@ @

The integrals (2) have the following characteristics which must be taken into ac-
count in the computations: infinite upper limit, the integrand can be unlimited
with r = rg and rapidly oscillate with large x] and yj values. We will first eval-
uate the residual term of the integral, rejectable with replacement of the infinite
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upper limit by a finite interval »

00 - . [ 8 28 '"]'_“ e 7 o0
Srf ——LJ‘—-L-—ﬁ)—-;: £ +,y.suz X,dr|& - wrrn Sry?drs 4)
5 A -/-,an: l'at/u'" e_”;a‘z,;z ~I-a+&~'rethn; 7

. 2

1\ f851-as a7 rycthr, a}
where ap = max (al, by)/H. Selecting the upper limit ry adequately large, it is
possible to make expression (4) as small as desired. The singularity of the inte-
grand at the point r = rg is eliminated by the substitution r = rg + w2, The com-
putation of the integrals (2) in the case of high x; and yj values requires the
use of quadrature formulas of the Philon type [4] or a great number of nodes in
the Gauss or Simpson formulas. With the use of the last integrals (2) it is pos-
sible for different xj and y; to compute the quadrature formulas without scaling
of the weights. In this article we have used the Gauss formulas with the number
of nodes being n = 40 [4]. With a parallel organization of the calculations the
computation of the rise of the free surface at 3,600 points required only 5 min-
utes on an M-220 electronic computer. The computations were made for the follow-
ing values of the parameters of the problem:

x, <58, |y| < 8,g/#= 6/ =0,1,
a€ [-02; 0,2].8€ [0; 08]xe [0,25; 4.75] .
In this case there did not have to be a further breakdown of the integration in-
terval for achieving a relative accuracy of 10-2-10-3.

(5)

2. Figure 1 gives a general idea concerning the influence of the shear of the
transverse component of current velocity on the wave trace behind the moving
pressure region. The values of the lines of equal deviation / from the undisturb-
ed level, shown in the figure, were normalized to the maximum 4 value in the re-
gion 0<xl< 5.5; -2 y1<2. The current velocity vector turns to the left with
depth, in the direction of a negative direction of the y-axis. The extents of the
conspicuous parts of the corresponding crests and troughs (level lines #0.25) in
the right and left parts of the figure differ by a factor of approximately 2.5.
As follows from the results of the preceding study [3], with an increase in the
B parameter the wave crests and troughs in the right part of the wave trace are
displaced toward the Ox-axis, but never pass beyond it. The computations indicated
that the maximum values of the J deviations from the undisturbed level are approx-
imately equal to the left and right of the Ox-axis for all values of the parameters
- (5). Thus, the transverse current velocity shear can lead to substantial changes
in the phase configuration of the trace.

Figure 2 makes possible a more detailed tracing of changes in the wave trace oc-
curring with a change in the parameter b of shear of the transverse component of
current velocity. As the scale unit along the z-axis we took the maximum value

& (x1, y1) in the region 2<x1<5, |yj/< 1.5; when there is no current velocity
shear (a = b = 0), = 2. With an incfease in the b parameter there is also an in-
crease in wave amplitude., In the cross section (Fig. 2,a) the z extrema with an
increase in b are displaced in the direction of the current velocity shear; in this
case the distances between adjacent extrema decrease in the region y>0 and in-
crease in the region y< 0. In the longitudinal sections (Fig. 2,b) the Z extrema
with an increase in b are displaced to the right (in the direction of greater x
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Fig. 1. Relief of free surface behind moving region of pressures with shear of the
transverse component of current velocity for a = 0, b = 0.5, X= 2.
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Fig. 2. Profile of fluid surface in transverse and longitudinal sections for a = 0,
M= 2 for different b values: a) curves 1, 2, 3 correspond to the values b = 0,
0.1, 0.5 with x] = 4; b) curves 1, 2, 3 correspond to the values b =0, 0.1,

5
with y1 = 0.75, and curves 4, 5 correspond to values b = 0.1, 0.5 with y1 7

0.
-0.75.

values) in the region y >0, the distances between adjacent extrema increase. In the
region y> O the % extrema are displaced to the left with an increase in b and the
distances between adjacent extrema decrease.
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Table 1
Maximum Deviations of Fluid Surface From Undisturbed Level
» TF 0 ‘ 0,1 _ 0,2 0,3 0,4
0,25 15,18 156,18 18,20 16,20 16,20
0,60 21,42 21,80 21,94 21,97 21,98
1,00 | 28,08 28,30 28,82 28,98 29,85
1,50 35,84 - 87,18 388,31 89,35 38,48
1,78 36,22 87,46 88,82 388,84 38,34
2,00 88,38 88,61 | 40,85 41,86 42,48
- 2,25 37,37 87,86 88,75 41,27 43,43
2,50 84,83 35,17 36,08 87,43 38,84
3,00 25,30 25,96 28,25 32,28 35,62
400 | 7,28 7,88 0,88 | 18,74 | 20,14
4,78 1,38 1,65 2,28 4,10 5,02
) "Table 2

Joint Effect of Influence of Shears of Longitudinal and Transverse Components
- of Current Velocity on Maximum[ 2 [ Values

1

| 0,1 d _02
* 2,2 |-01 ] 01 o2 t-0,2]-011] 01 |02,

- 0,28 |15,13 |13,18]15,21 | 15,24 |15,14 |15,17 |15,22 | 15,28
0,80 |2:,77 |21,73|21,88 | 21,92 |21,77 { 21,88 | 22,03 | 22,16
1,0C [28,12 [28,31{80,84 | 82,41 | 28,35 | 28,81 | 29,86 | 32,47
1,25 |27,74 [33,94(35,81 | 34,36 |31,20 | 82,88 | 36,82 | 38,08
1,5¢ |22,1G |39,04|34,75 | 35,01 {37,15 | 39,68 | 85,92 | 38,43
1,76 | 41,21 | 57,02/87,47 | 38,39 | 41,28 | 37,83 | 38,76 | 37,85
2,00 |:zu,58 |2yu,88|36,24 | 33,68 140,25 | 41,42 | 37,83 | 38,46
2,25 | 42,14 | 41,47|34,11 | 30,27 {43,58 | 42,82 | 84,44 | 81,11
2,50 |42,5% {39,27/30,81 | 28,39 | 45,67 | 38,2432,18 | 25,98
3,00 |40,67 |31,82|18,89 | 18,38 | 40,89 | 34,78 | 21,78 | 14,53
4,00 | 24,44 | 15,42] 8,62 1,22 | 28,80{17,77 | 4,87 | 1,78
- 4,73 | 12,18 ] 5,02| 0,32 - 15,24| 68,85 | 0,85 | 0,09

27
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

FOR OFFICIAL USE ONLY

An analysis of the results of computations shows that the transverse velocity
shear, directed in the negative direction of the y-axis, elongates the wave crests

- in the region y>O0 and turns them toward the Ox-axis (the angle between the crest
and the Ox-axis becomes less). In the regiony = 0 the transverse velocity shear
shortens the wave crests and increases the angles between the crests and the Ox-
axis. The lengths of the waves increase in the region y>O and decrease in the
region y< 0. With an increase in the b parameter the amplitudes of the waves
increase.

3. We will make an analysis of the dependence of the maximum deviations of the free
surface on the values of the parameters a, b,# . The maximum |Z |va1ues were de-
termined for the region 2€ x;< 5, -1.55y1< 1.5, The max |Z|values are given in

the tables with an accuracy to the factor pg/ (ZWFHCZ ).

Table 1 gives the results of maxl& Icomputations for a = O and a series of-H and b
values. The author of [3] gave the critical value of the parameter H=(1+a-
bz)"l, with transition through which there is a change in the composition of the
wave trace. For a = 0 and 0€b< 0.4 the critical H value falls in the interval 1
<3!,S 1.2. It is interesting that with a fixed value of theb parameter the maximum
M |deviations are attained with H= aezzz, that 1s, greater than the critical
value. An analysis of the results of computations cited in Table 1 indicates that
for b< 0.4 and #€Rythe changes in the maximum deviations of the free surface do
not exceed 10-12%. The influence of the transverse shear of current velocity is
greater with large # values (or small velocities of movement of the region of
pressures relative to the free surface). For example, with = 2 the change in

the max\& |value is 10.7% with a change in b 0-0.4 and for X= 4.75 the max|4|val-
ue with b= 0.4 is almost six times greater than the corresponding value with b =
0. In addition, with a decrease in ¥ the changes in the max |& |values decrease
with a change in the b parameter. With an increase in the b parameter for all

‘) there is also an increase in the maximum deviations of the free surface from
the undisturbed level.

We will examine the joint effect of the influence of shears of the longitudinal
and transverse current velocity components on wave amplitudes. The results of
computations for b = 0.1, 0.2 and a number of values of the a and M parameters are
given in Table 2. The critical values of the M parameter here fall in the inter-
val 0.84<X <1.32. An analysis of the results of computations shows that with al-
lowance for the shear of the longitudinal component of current velocity the prin-
cipal effect of presence of a shear of the transverse component is reflected in
an increase in the amplitude of waves. The influence of longitudinal shear is

_ more varied. With small 3f values with an increase in the a parameter there is
an increase in the max|Z | values; with large Jf values the picture is the reverse.
A change in a is reflected to a greater degree in the case of great X . The
position of the maximum max |& |values (with respect to A ) is dependent on the
a value to a greater degree than on b. With a decrease in a there is an increase
in Rat which max|Z |attains its greatest value. For example, with b = 0.1 and
a = -0.2 the greatest max}/ |value is attained with o= 2.5 and with this same b
value and a = 0.1 with # = 1.75. We also note that these ) values are greater
than the corresponding ¥ values.
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Summary

The intensity of shear of the transverse component of current velocity vp, exerts
a substantial influence on the phase configuration of the wave trace. With an in-
crease in |v the wave crests from one side of the wave trace (symmetrical with
vQz = 0) become longer, and on the other side -- shorter. In this case the wave
crests are turned relative to the pressure epicenter in the direction of rotation
of the current velocity vector with depth (Fig. 1).

The maximum displacement of the free surface is an increasing function of the shear
modulus of the transverse component of current velocity Ivoz|.

The greatest displacements of the free surface are attained with velocities C
of movement of disturbances less than the velocities of propagation of long waves
(critical).

In the case of small (in comparison with the critical values) velocities of move-
ment of disturbances the maximum displacements of the free surface increase with

- an increase in uj,, the shear of the longitudinal component of current velocity,
and decrease with large C values.

The influence of shear of current velocity on the amplitudes of waves is most con-
spicuous in the case of small velocities of movement of disturbances. For example,
for a C velocity half as great as the critical value the wave amplitudes can change
by a factor of 20 or more with a change in the shear parameters in the intervals
indicated in (5). In addition, the changes in maximum amplitudes of waves do not
exceed 15% for velocities of movement of disturbances greater than the critical
values.
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UNSTEADY THREE-DIMENSIONAL WAVES IN A FLOW OF HOMOGENEOUS FLUID WITH VELOCITY SHEAR

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 28 Feb 80) pp 36-44

[Article by A. M. Suvorov and A. N. Tananayev]

[Text] Abstract: A study was made of the process of de-
velopment of three-dimensional surface waves
generated by moving atmospheric pressure dis-
turbances. Flow velocity is a plecewise~linear
function of the vertical coordinate, which makes
it possible, with a sufficient degree of accur-
acy, to approximate both the direction and velo-
city modulus of real currents in the ocean. The
article gives a method for the analysis of three-
dimensional waves in an N-layer (with respect to
current velocity) sea. The special case with N =
1 is examined.

The theory of ship waves is one of the complex branches of modern hydrodynanics of
the sea [1-4], and at the same time is quite important for practical applications.
Emphasis has been on study of wave movement in a medium at rest in an undisturbed
state or in a fluid flow having a velocity constant in depth. Recently interest has
been shown in investigation of the influence of the vertical structure of currents
on the parameters of three-dimensional waves [5, 6, 13]. In these studies current
velocity was assumed to be a linear function of depth. However, observations show
[7, 9] that one of the characteristic features of horizontal currents in the ocean
is a quite complex dependence of their velocity and direction on depth. In this
article we investigate unsteady three-dimensional surface waves for a piecewise-
linear vertical profile of flow. velocity making it possible with an adequate de-
gree of accuracy to approximate real currents in the ocean.

1. We will examine the flow of an ideal incompressible homogeneous fluid of con-
stant depth unbounded in horizontal directions (see Fig. 1). Here z = -h.(j = 0.1,
«ee3 hg = 0) -- the vertical coordinates of the points at which the moduius and
direction of the velocity vector of the horizontal current are stipulated (for
example, on the basis of oceanic measurement data). In the intervals between these
points the components of the current velocity vector along the xj and y; axes were
approximated by linear functions of depth
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(1.1)

Fig. 1.

It is also assumed that

? ' 7
;}-%- q ;;.. 1//.‘,-15. vith Z==4 (/../,,,., ,y..,) s

the derivatives of current velocity at these points can have discontinuities of
the first kind. '

Assume that a region of atmospheric pressure disturbances in the form

Ioa-paf(xl*'[/,tsy/*yot)‘. ! ' (1.2)

) moving at a constant velocity is imparted to the surface of a fluld flow at the
time t = O.

Within the framework of linear theory we will investigate the process of develop-
ment of three-dimensional waves generated by disturbances (1.2) and described by
the following system of equations, boundary and initial conditions, written with
(1.1) taken into account,
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P(L/U/'Pd)h})‘ ﬁ/,’,ﬂ;(r :a;;—)- l?l/:;v/'-'fl‘z’\ (1.3)

- =0 (-oo< Xy, ¥, <+00, —ﬁ/.<2 ,<- /-_,,/'-/;,.,, //).'

) Qz--,‘z,,),

WMoy Ly ,a,-,o,,, E (z--,/z/.,/.-/...‘..,,v'--z)... R € W)

P99 = Par Lir =, (2=0) 3 |
=0 .(a‘-ﬂ) :

U/.- V/.-[V/.-;/ (1.5)

Here : . g 07

A -e-i U=~ J g

%2 Ton, Jay’
are wave disturbances of velocity and pressure; P 1s fluid density; g is the ac-
celeration of gravity; %1 1s the rise of the free surface; Zj (3 = 2,...,N) is the
displacement of the interface of the layers from an undisturbed position.

Then transforming to a coordinate system related to the moving region of atmospher-
ic pressure disturbances - —
(X-K+”t ymy,+U¢),

using integral Fourier transforms for x, y and the Laplacian for t, we reduce (1.1)
-(1.5) to such a boundary-value problem for the Fourier-Laplace transforms Wy of

vertical velocity g e e B
W: , - r p; =( (—/z/-<l <-/¢/.__,) :

/22 (1.6)
va.a (z""A ) y
2
_ Wpm Wpnpr djor Wt = Bas [#2= Wjunyz] @byl 1), 1.7

p,,W,+/a,2u//z-I @=0) .

where ) —

.-“—;/-95 7;5/ ,é/; .(+ z,/rzU +in V‘ ’.z{,...y/.”
‘?- Vo-t l;." /-/6/291//6{/._/)21 /602-0’ ﬁjz-l.”Zé-““‘/z@/'.,
’ 2 . 2
Gimgps {00 fymi. rimmieal,
- Po/o/"z;(”i.f&)_
&g

’
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m, n, X are the parameters of the Fourier and Laplace transform.

The solution of equations (1.6) has the form
W,=¢ shr(z+h) +/5A;-(z+/z/.) |
ary conditions (1.7) gives the following sys-

and .after substitution into the bound
fficients Cy and C:!l:

tem of algebraic equations for determining the unknown coe

CA:- 0 » e o

2 ! S

rnal Cr= Ciny Prot ™ Coor $ur?

ld/ﬁ VA / / ) (1.8)
Q"t---v /V—/ )

2 ! A
e & =Gy P i Yfor

C P+ Cg=A. o
H . 2
ere P/";“/"h p/,;.q-r/o/. Cﬁr'/;'., g/-!z/.aéﬂ///-ﬁ-/;g;.ﬂir/,

'mpg? . "4l .
Py rp/ .s/zm‘é, g/. rp; a/z/'/é .

After a number of transformations from (1.8) we obtain

.7 /B8 <,/
5---—‘J R C - / ! J~r 7 2
f . . —— d.-)' /7
- A /4, 7 by P
S .=/, ! - 7
Y=/ =7 5 = et Pror* Sies Bjes 0

/ ’

- ! /
J/. :/",/D/.’, * 5/'1-/ f/',/ ’ do- ,, do’- o .

d=p.d.  +p'd ' - ’
G G 4 G
We note that with j = 1 Bj = 1.

Taking these results into account and applying the inversion formulas, we derive

an integral representation for Zj (J = 1,...,N)

-.:.'9&-‘(3 J e ‘mre iny dmdn |
-00 / '

/ 47[2_F (1.9)
- z&"loo»F( )
. : Lr AN o2t
A A
(1.10)

S=te®
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where

i . m, n) 'ﬁ/ﬂ;'("/' sA /-/;//.o- .s/fcbf-ﬁ;.) 2

For other hydrodynamic parameters, instead of the indicated Fj in (1.10) we will
have the following expressions:

., ) for vy
/73,0,[6/-5/1./' (21-/2/.) +* J/.:ﬁr (z-../ﬁ/)]J/
’/"",6,{3/21"(“/;/-){-5/(% ) 3 L
. . _ imp;, g im
c/u-(l )[ ( Z ,_G;L> 3y ]}5/
.-/g{s/zr Z+h)[6 -/6—‘5- -:51— ]+ forvj,
+chnr (14-/; )[ (:g”_;‘%z_ 4..]5;.),._}..‘7".” s
_ 6-,/5’97"‘2 [sﬁr(zﬁ-/z/.) (ﬂ/‘}"@d}é?)-k
+Chnm (Z+ /z/)(/a/z 5/,'_ p,; 5/)] 6) for Py

2. We will make an analysis of the integral (1.10). The poles of the integrand
are the point 0L = O and the roots of the equation

dl(d) -2, (2.1

which with X = i6 undergoes transition into a dispersion relationship for period-
ic waves in a flow of a homogeneous fluid with a velocity shear. The left-hand side
of equation (2.1) is a polynomial of the 2N-th degree relative to & and according

to a corollary from the fundamental theorem of algebra [10] it has a unique expan-
sion in the form

2 o 2w .
2, (&)= Flm.n) (2t )=t e (rn) 7 ©-6,)=0, (2.2)

where F'(m,n) is a known higher coefficient, the expression for which, since it is

unwieldy, is not given here. Applying the Cauchy residues theorem, from (1.10) we
obtain
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yarZ [Aoma) St ACH I i
IF o Z V4 - ) 1 (2.3)
F ok 7 (-

ar ¢ £

The first expression in the brackets, not dependent on time, corresponds to sta-
tionary waves, whereas the second, consisting of the sum of 2N terms, describes
the transient process.

For real m and n.values equation (2.2) has real coefficients relative to & . Ac-
cordingly, among the roots GC of the equation there can be both real and paired-
conjugate complex roots. The corresponding &y values will be either purely imagin-
ary or complex. The real parts of each pair of complex roots &f have opposite
signs. For complex roots with a positive real part the Jj value (2.3) increase ex-
ponentially with time. In this case with t—+co limitation of the integral (1.9)
can occur only due to interference of waves for different m and n.

An investigation of the parameters of a fluid flow for which among the roots 6 of
the dispersion relationship there are conj ugate-complex roots, is an important in-
dependent problem in the theory of hydrodynamic stability [11, 14].

We will assume that all the roots 6f are real expressions. However, in each spe-
cific case this fact must be checked.

Since zj |t=0 = 0, due to the uniqueness of the Fourier transform, from (2.3) we

- obtain F/’ ( 0’ /71-4, /l.) N . 6 (o‘* . m‘-}z ) . —0 S
zl .’- — .
VA4 « 3 L= of )
oy € P (e

With this result taken into account (2.3) assumes. the form ..
- W )

_ g S D) (1= e %)
/ F A f, (“x’ *f)

Pyl (2.4),
Introducing integration for t, from (1:9),'('2.{;_)
Po
j b ; Ux (2.5)
where T 6 o dg doar '
]/'A'HIS\Y ¢/A’ ¢ S ’
0-7y 7
22(n8\ F (derr8) .
| AL
B (l ) A (‘- {)
ot

x=£R-c05y ymRsin g, m=R c058, n=rsinb.

3. We will investigate the asymptotic behavior of the integral (2.6) for large R
and t values. We will use the stationary phase method for multidimensional inte-
grals [12]. The stationary points are found using the following system of equa-
tions:
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—— . -

O, =0

; : (3.1)
B . .-
_.¢¢,f ' ;sin (-9 =0 3.2)
—‘-65 ER + cos (9 J) =0 3.
taking into account the inequality
0 < ¢ <t ., (3.4)

- ensuring that the stationary points belong to the integration region. We will exam-
ine cases when the system (3.1)-(3.3) has only real roots. We will assume that equa-
tion (3.1) has at least onec real root @ = 9 (r), dependent on r. Then substituting
g = 9?‘ (r) into (3.2), (3.3), excluding & and taking into account that

ot 5.
ar

we find two equations for determining r, and £,

' 3.5)
tgy= ¢ (") (
20, \ "' 6, ~y) »
¢ym (3} hos (8= 1) (3.6)
78,
where L] -
‘ ;—@5 7
()
r-———+ 690 ren, 3.7)

The main term of the asymptotic representation for (2.6) in the case of one simple
- staticnary point B = (69, T, , EA) assumes the form

az’

A ®, (8) exp [ MM(J }n-;.scyn , ] . | (3.8)
R\aet 3,

where
- 7, (8)
M‘(n-[akgo- rRcos (i—;)]‘; 8‘- 72y 275 |

is 4 matrix consisting of the second derivatives of Nii for é, r, £ at the point
By r, s =1, 2, 3; sign D is a signature of a quadratic form with the matrix Dy.

A From (3.4), (3.6) we find that the wave corresponding to the stationary point B
is localized in the region

0“‘[Rl‘t ) where [“-——:6"00.!-,(5"() -
r
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is the velocity of motion of the leading edge of the disturbance. When there are
geveral stationary points in (3.8) it is necessary to take the sum of the corres-
ponding asymptotes.

4, We will examine special cases.

a) N=1,B3 =V =Ty =V, = 0 (a layer at rest in an undisturbed state of a flu-
id of finite depth). Then we have [4]

dimgrtshrty e r(rim ) chrty = rehrty (Unk ) (mey),
A= iCmlx [ grinrs, ),
y(r) =g thrH, + rH, sechird, rd2 iy
T T arg - gthrk, - rg#y sechirh, \| gthrH, T
The function ¥ (r) for Upc 121 (c =/gH1) decreases monotonically with an increase
in r>0, tending to zero when r-0 and assuming a maximum value (Uozs' -1)~
with r = 0. For U c-l«1 the ¢ (r) function becomes equal to zero with r = rg,
r =00 and and contains a single maximum with r = r3 (rg< rz<oo). In the region
= rn<r<r: ¢ (r) increases monotonically; with r>rg it decreases monotonically
w?th an Increase in r. It therefore follows that equation (3.5) with Uoc"lal has
one positive root r, for 0< J<X1, where ¥, = arc tg (Uozc"?—-l)"llz. With Uoc"l <1
and ¥<¥, (62 = arc tg ¥ (r5) equation (3.%) has two different positive roots r =
ryand r = 1, (ri>r3), with ¥ = ¥ — one multiple root r = rg. Accordingly, the
it

wave movement will consist either of one longitudinal wave w Uoc‘1> 1, 0<)<{7
or of transverse and longitudinal waves with Uoc'1< 1, 0< X< 32.

b) N=1 (flow of a homogeneous fluid with a linear profile of current velocity in
depth). We obtain

g=(977- a,p,) sh rt rp} chirty= rohrt (d-o)(dmly) o
4= ["w.s 8G°+ roin Nj"" iz rﬁ':(l’.qw'* a’,ame) t

7
hz - . er z;j ‘. . .“

,_-_\/t. r# Cl,co.s:-o- d, 3440) - yz,'t/u-//,"]-. g
"A,’-d‘z\/d'- VA v R .
tg §, ==& A “5”',52..2[6‘%'_5_(4;/,,0;(,-)' FuLATH

gm T 74 ) g -l R (- 5
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the ‘nu(r) function after the substitution of tg 61,2 and dé’l 2/dr into (3.7)
proves to be quite complex for an analytical representation. A numerical analysis
of the parameters of wave motion in the case of a current velocity direction con-
stant in depth was carried out in [5] and with allowance for change in direction
-- in [6].
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COMPUTATIONS OF DISTRIBUTIONS OF ORBITAL VELOCITIES OF WIND WAVES

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 20 Sep 79) pp 45~54

[Article by L. A. Korneva and V. P. Liverdi]

[Text] Abstract: Experimental data on interre-
lated two-dimensional, conditional and
marginal distributions of orbital velo-
cities and wave periods in the Black Sea
and ocean are examined. There was found
to be a change in the characteristics of
the conditional distributions of orbital
velocities in dependence on the ratio of
the specific value of the period to its
mean value according to the wave record.
In computations of the mean orbital velo-
city it is recommended that the experimen-
tal curves of the distribution of orbital
velocities be used. In order to accelerate
computations data are given on the change
in a single parameter of this distribution
as a function of the stage in wave develop-
ment.

The orbital velocity of wind waves can be determined for each wave by computations
if at the same time the height and the period of the wave vy = thi/Ti are comput~
ed. Individual v4§ values are random values. The description of their statistical
behavior requires a study of the experimental orbital velocity distribution func-
tions & (v). Still more precise information is given by a study of the two~dimen-
sional distributions ¢ (v,T). At the same time the initial experimental material
obtained from the wave records are the heights hj and periods Ti of the waves,
constituting a system of two random values. This system can be described by a two-
dimensional experimental statistical table of the values nij(ho, Tg), that is, by
the number of cases stipulated at equal intervals 48hg and ATy of the relative val-
ues hg = h/h and Ty = T/T. Using such a table it is possible to compute the exper-
imental values of the probability demsity of a two-dimensional distribution ﬁf(ho,
Tg), conditional distributions ¢ (hg | Tg) and ‘f(To| hg) and the marginal distribu-
tions ?(ho) and Y(Tg). These three types of distributions are related to one
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another by the theorem of multi_plication of laws [1]

y(/rzo,ﬂsh"y@) !f(ho\.r;)- | (1)

Historically it has so happened that the distributions P(T.) and ”P(ho) for wind
waves were first studied using one-dimensional series h0 ang Tg, whereas the two-
Jdimensional distribution was found using the multiplication theorem. For theoret-
ical computations of ‘}’(ho, Tp) it is convenient to consider hg and T, to be inde-
pendent, that is, assume that (P(h()'TO) = Y(hg); then the theorem of multiplica-
tion of laws is simplified

g G 1) =9 () 9(5). @

Later it was found that the experimental data on 4’(h0|T ) do not correspond to the
assumption of a nondependence of this conditional distrigution on Tg [2]. This
is the reason for the discrepancy betwean the experimental distributions and the
theoretical distributions, obtained with use of the theorem of multiplication of
laws for independent values. In our recent investigations in the Black Sea the
basis for obtaining different distributions is the initial two-dimensional nj

- table having i rows for the hg values and j columns for the Ty values. If it is :
taken into account that

¢ (| )= =—— y(-,;)=_§__’L ,
’ "Z’zijdﬁa g ol

it can then be shown that the theorem of multiplication of laws on the basis of
the data in such a table is satisfied in general form (1), since

- —/l,'jA - e
= .
_ g'(/lp,a) ; /¢¢'jdhod75
/
It is possible to proceed from the main system (hg, Tp) and the two-dimensional

distribution tf(ho, TO) corresponding to it to systems of values related to ho,
T,.
0°.

In this study we will attempt to find njj (hg/Tg, Tg)» P(hg/Tps I?l, and from them
@ (vg) and (v), where v = JTh/T, and vg = hg/Tg = v/vi; vy =nh/T

In order to obtain an ny;(hg, Tg) table we used two two-dimensional tables (one of
them included 4079 pairs of hy, Tqy values, taken from wave records of the Black
Sea, whereas the other included 8116 pairs of hy, Ty values obtained on voyages

- in the Atlantic Ocean [3]). The hg and Tg values were used in computing vg = hg/To
and the obtained orbital velocity value V is assigned the number of cases of n
(hg, Tg) found in this same box in the table. Then a statistical table ny (vo, ’1‘0)
is obtained for equal intervals Avo and ATO. In our computations we st'.ijulated
Avo = 0.4 and ATO = 0.2. From the ny4 (vos Tg) values we find all the other types
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of distributions. Table 1 gives the probability of the two-dimensional distribu-
tion computed using the formula

”-o
9’(‘3:7;)’ ; 4y 8} - (3)

The density of the conditional distribution of orbital velocity for a fixed period
Tp is computed for each column of the two-dimensional table

A= ©

The conditional distribution of the period for a fixed value can be computed for
each line of the two-dimensional table

2R . VA
‘I(v|%) ;,20.‘7‘;

The total values in the table columns and rows are used in computing the marginal
distributions of orbital velocity ‘y(vg) and period Lf(TO) respectively

by q(%)=_‘§‘_f{{___. *)

q(’o.)'g ;: ”ij“’l’ %: n;; 4 Y
J

The ¢ ., (Tp) values are given in Table 1 in the last additional row; the Soex(vo)
values are given in the last column.

The ‘?(vo |T0) values can also be found using the theorem of multiplication of

laws since they are equal to
; % U D).
¥ (% ‘ I)" )

These values are given in Table 1 in parentheses for some T( values. It can be
seen that ¥ (vg |T ) differs from ‘P-(VO). Naturally, the statistical characteris-
tics of the conditional distributions will also differ from the characteristics of
the marginal distributions, that is, 'will not be constant, but will change in de-
pendence on the fixed Tg value. An analysis of ¢P(vg |Tg) and the statistical
characteristics of this distribution (such as mean Vs the dispersion svo , the
variation coefficient CVvo) was made for the Black Sea and the Atlantic Ocean
(Table 2). The changes in these characteristics are shown in Fig. 1. It can be seen
that the considered statistics (statistical characteristics) are not constant but
are dependent on Tg. With Tg = 0.85 for the Black Sea and with Tg = 0.7 for the
ocean there is a maximum on the vO(TO) curve, For 6v there is a maximum with a
value Tg = 0.6 for the two considered regions. The variation coefficient Cvy
changes smoothly from large values in the case of small Ty, attains values 0.52
with Ty = 0.8 and then decreases to 0.35 with Tg = 2. We investigated the experi-
mental marginal distribution ff(vo) = Y(v)vx for the Black Sea and ?(VO) for the
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ocean. Thege distributions are characterized by the following statistics: v =
1.03, 6yg? = 0.27 for the Black Sea; vo = 1.04, §2 = 0.26 for the ocean. It can
be seen that the marginal distributions ¢ (vq) for goth water regions are charac-
terized by one and the same variation coefficient Cyyy = 0.52 and the value vg =
1.03-1.04. The greatest difference ‘}’(va | TO) from (p?vo) is observed for waves

of short and long periods and the difference is less clearly expressed for periods
close to the average.

Table 2

Statistical Characteristics of Conditional Distribution 5"(‘10 ITO) as a Function
of Different To

A Black Sea - Ocean .
Vo ch', ’v, V", CUV, - [v:
0,2 10,79 0,75 0,26 0,84 0,78 0,30
0,4 |0,85 0,85 0,34 1,10 0,88 0,36
0,8 |1,10 0,66 0,36 1,15 0,84 0,86
0,8 1,18 0,48 0,82 1,14 0,48 0,31
1,0 {1,14 0,44 - 0,28 1,08 0,44 0,21
1,2 1,02 0,40 0,17 0,85 0,42 0,14
1,4 |0,88 0,38 0,11 0,82 0,38 0,10
1,6 {0,786 0,38 0,07 0,71 0,37 0,07
1,8 |0,87 0,36 0,05 0,64 0,36 0,06
2,0 10,88 0,34 0,04 0,82 0,84 0,05
2,2 10,80 0,34 0,08 0,80 0,38 0,05

Now we will examine in greater detail the marginal distribution ‘/’(ho/To) = ‘P(vo)
because we must obtain from it the distribution ¥/v)v, where v = JTh/T is the true
orbital velocity. For this we use the notation Jh/T = v,, 71 h/T = v. Then hy/T,
= v/v4 = vg. Thus, the distribution ¢ (vg) is the distribution ¢(v/vx). For the
linearly related arguments v and v/vi there will be a correlation of the distribu-
tions themselves [1] in the form

- p(viy) = ¢ ()% -

With transformation from the v/v, values to v/v we will assume that vi = )8 V. The

value is found from the experimental distribution ‘f (vg) = ¢ (v/vy), computing
the first moment of the distribution. It is equal to
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(TD=0) e () o).
: | 0 (6)

Fig. 1. Statistical characteristics v, |T0, Cy |T s 6% To Of the conditional dis-
tribution @ (vy |Tg): 1) Black Sea; 2 ocean’ V0 0 0 |70

Since the ¢ (v ) values are expressed in the numerical data (Table 1), computations
of the first moment were made by the numerical integration method, where use was
made of the method for computing the statistical characteristics by the approach of
grouping of values by classes [4].

It was therefore found that for the distribution ‘:o(vo) (v/vs) = 1.03-1.04 for the
Black Sea and the ocean respectively. It can be assumed that ﬂ = 1,04, The scaling
of ()0 (VO) into _?’(v)?r' was carried out on the assumption that Y Wv = ¢f(v0)l8 with
the ‘argument v/v = v/f Vi.

Table 3 (columns 2,3) gave experimental data for the Black Sea and ocean and in Fig.
2 it can be seen that the experimental distributions of the orbital velocities of
the two water regions coincide quite well.
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Figure 3 shows the integral curves
v/V o -
Fom =S wumdim
oo

whose values are expressed in percent (so-called guaranteed probability); using
these curves it is possible to determine the ratio of wave velocity to mean or-
bital velocity for waves of stipulated guaranteed probability.

Table 3

Experimental Generalized Distribution 9’ (v); for Black Sea and Ocean and Its
Computation From 9(h0, ny) and YP(Tg, nT)

Computed ¢ (¥) ¥
V/ 7 Black Sea Ocean n,=8, =2 /02, g,
! h=2
0,2 0,20 0,16 0,38 0,42
0.4 0,44 0,48 0,66 0,65
0,8 0,78 0,71 0,80 . 0,76
0,8 0,85 0,80 0,80 1 0,78
1,0 0,80 0,89 0,87 0,88
1,2 0,86 0,78 0,50 0,53
1,4 0,42 0,48 0,86 0,38
1,6 0,26 0,82 0,26 0,26
1,8 0,20 0,21 0,18 0,20
2,0 0,18 0,14 0,18 0,14
2,2 0,07 0,07 0,08 0,10
2,4 0,04 0,04 0,07 0,07
2,6 0,02 0,02 0,05 0,06
2,8 0,01 0,01 0,04 0,04
8,0 0,01 0,01 0,08 0,08

For a comparison of the experimental material with the theoretical scheme we made
computations of the theoretical value P(vg) from y’(h(), TO) in two variants:

000 7)= 670 (4) F (I 2exsr (B (35, ™
0, (1, 7)=8r () r (Eon, 12 exp|-r G- () ] , ®

In both cases we will assume that ¢(hg, Tg) = ¢(hg) ¥ (Tg), that is, that P(hg)
and P (Tg) are independent and their approximation was taken in the form of a
Weibull distribution ¢ (x) = nAxOn‘l exp [-Axgl, where A = {%(n + 1/n). In the
first variant ny = 2, .np = 3, in the second ny = 2, ny = 4. These np and np values
were selected on the basis of the experimental values of the variation coefficients
which we obtained Cypn = 0.31 and Cyhg = 0.52 for the Black Sea and C = 0. 34,
Cyhg = 0.52 for the ocean [3, 5]. The determined ¢;(hg, Tg) and 97 (hy, Tp) val-
ues were used in forming two variants of two-dimensional q’(ho, Tg) tables.
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Computations were made for all the theoretical distributions.

Qv
10

45 -

Fig. 2. Distributions ‘:P(v);: 1) based on experimental data for the Black Sea;
2) on the basis of oceanic data; 3) computations of (f(v)v from ¢ (hg, ny) ¢ (Tp»
np) with ny = 2, np = 3 and 4) with np = 2, ny = 4.

Fwy.
i

Al 50 <

- 7 2 LA

Fig. 3. Integral distribution -- guaranteed probability obtained from the corres-
ponding curves in Fig. 2.

The computed distributions So(Vo) are given in Table 3 (colummns- 4, 5 and in Fig.
2). In comparing the different curves in Figures 2 and 3 we note that the two dif-
ferent variants with respect to np do not give a substantial difference in the
values of the approximating computation curves %(vg). A somewhat greater dis-
crepancy is observed when they are compared with experimental data: the most prob-
able ¢ (v)v values (Fig. 2) do not coincide; for vg < 1 the theoretical guaranteed
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probability curves are less than the experimental values (Fig. 3). Such a differ-
ence between the experimental and computed distributions should be expected since
the fundamental assumption of theoretical computations on the equality lp(vo ,TO)
= ¢ (vg) does not correspond to the dependence which we obtained between the con-
ditional distributions and their statistical parameters on Tp, as was mentioned
in the first part of the study.

It was demonstrated earlier in [3] on the basis of an analysis of ¥ (J ), and now
in this article in the example of ¢ (v), that the simplified theorem of multiplica-
tion of laws (2) is not applicable to computations of the original distribution of
waves; it can be considered when ‘/’(ho ITO) is unknown. In order to refine such
computations it is necessary to apply the theorem of multiplication of laws in

its general form (1), which agrees with the method which we used in computing dif-
ferent types of distribution on the basis of experimental two~dimensional tables.

Accordingly, experimental curves and tables characterizing different distributions
of orbital velocities are recommended.

T Y —

Q" =
~A
~N

¢/v

, 0 7 F sV

Fig. 4. Changes in V/V values at different stages in wave development (t/V): 1) on
the basis of experimental data for the Black Sea; 2) for ocean; 3) our computations
using the V. V. Shuleykin diagrams method [6].

As the distribution parameter % (v), changing in dependence on the stage of wave
development, it is possible to use vi/V. Its numerical value can be precomputed
since it is related to h and T, whose values are determined on the basis of the
experimental data in [5]. Figure 4 shows the dependence of v4/V on t/V, obtained
from the dependence of h/V2 and T/V on t/V. As the latter we took the experimental
dependences [3] for the Black Sea and ocean and the prognostic expressions in the
V. V. Shuleykin method [6]. It can be seen that there is a specific difference in
the course of development of waves in the Black Sea and ocean.

In conclusion we will generalize the scheme for computing orbital velocities. On
the basis of the wave-forming factors V, t and x we determine t/V and x/V2. If
on the x-scale (Fig. 4) x/V2<t/V, the waves must be considered as not developed,

49

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

FOR OFFICIAL USE ONLY

but rather developing [7] and the V4/V values are determined in this case on the
basis of t/V. Computations of well-developed waves are made from the dependence

of v4/V on x/V2. Since the wind is stipulated, the numerical value of vg/V and V
makes it possible to determine the numerical value vx = Vvi/V. Then we determine
v =,3 vx. On the basis of known v and the ¥ (v)v values we determine P(v), giving
the probability of all values of specific v = Vv/V different from v. Using Fig. 3
we also determine the guaranteed probability of specific values of orbital velo-
cities. Such a prediction thus gives not only the mean orbital velocity, but all
ite other values in this stage of wave development with an indication of their
probability. '
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EFFECT OF GEOMETRY OF PRESSURE DISTURBANCES ON CHARACTERISTICS OF CAPILLARY-
GRAVITATIONAL WAVES

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 19 Jun 80) pp 55-64

[Article by V. V. Trepachev]

[Text] Abstract: The effect of the geometry of
pressure disturbances on the amplitude
of generated capillary-gravitational
viaves at the surface of a homogeneous
ideal incompressible fluid of infinite
depth is investigated. The pressure dis-
turbance is modeled by a normal stress
changing harmonically with time. The
article examines the case of generation
of surface waves by a platform of ice
of finite width oscillating under the
influence of a pressure disturbance at
its surface, In this problem the pressure
of the platform on the fluid is an un-
known function and is determined by solu-
tion of a mixed problem.

Capillary-gravitational waves caused by surface normal pressures have been studied
by the authors of [1, 3, 15]. Problems relating to forced oscillations and diffrac-
tion in the presence of a plate of finite width without allowance for surface ten-
sion were investigated in [1, 2, 14]. The influence of surface tension and the
finiteness of depth was examined in [9].

1. We will examine the problem of forced harmonic oscillations of an ideal incom-
pressible fluid of infinite depth

ou__ 1 0P _,, Gy, 1 3P

- — —— - - - '{.ly,
at P ax gt p v
-a-g + oy -f, P = Py + P?’ ' -0
ix 9y :
_. - .i_zézg- p” -ﬂ-y' y-ﬂ,
p+992 dﬁxz ’ at
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p._p.(x)e'iwt’ U-V=p-ﬂ. =<0,
(7. «. v, P) =0, <x1+22),/2——-oo.

Here u, v are the components of horizontal and vertical velocity; Z (x,t) is the
form of the fluid surface; & is the surface tension coefficient; § is the acceler-
ation of free falling; x>0 is the Rayleigh dissipation coefficient [1].

The origin of the Cartesian coordinate system was selected at the undisturbed flu-
id surface; the y-axis was directed vertically upward. The movement of the fluid
was caused by harmonic oscillations of normal pressure P* with the frequency o .
The motion of the fluid at the initial moment in time is eddy~free and therefore
even in the presence of Rayleigh forces the Lagrangian theorem of conservation of
potential motion remains correct [1]. Introducing potential using the formulas

2y iwt 0y twé ‘@t
U= 4 ’ Vo = ’ - X)e ) .
7 5 i=7(x) (1.2)
from (1.1) we have a formulation of the problem for potential
- 5 N . ' o .
"_‘:+ﬂ -0 M-L‘_(ﬂ_ vg--< .L"."L.) yed. (1.3)
2x%  9y? P @ \dy [ ax*3y
; 94 _ (1.4)
X ) mme— { —Ie -0 N Va (@ C—ut @ N
Wp(R)m=i5 sy ( H“ )/y .

; 2
<_ﬂz,zz._._w g )0 () e,
Ix ady dxady :

Applying to (1.3) the Fourier transform for the x-coordinate, using the contraction
theorem, we obtain integral representations for potential <70and rise of the fluid
- surface YZ -

(1.5)

’

‘/‘&”---—LW— T Y ”_8_/2 ";A’Q'eq;”e[k'(x-o()
gy ) P08 [ [ [

- /1T . C Kk [ -ikix- G (x-t)
(X) m— L [pihix- 1.6
- 7 (X) Zﬂpy_j'o (,()de(jd [e. ny jt, (1.6)
oo 2
a= # (/e 42 =, @7
(o579

Here )y was determined by formula (1.4); k is the wave number.

The & value on the real k-axis with P-=£ O does not become equal to zero; there
are no free waves in the solution. The use of the complex frequency method = “}1
- ido, u)2>0 [6] in this problem gives a result equivalent to the Rayleigh meth-
od. These two methods and others, as well as their correspondence to radiation

52
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

i, i FOR OFFICIAL USE ONLY

principles, were fnvestigated (n {1, 5-8].

2. It has been demonstrated that the dispersion relationship (1.7)

# (/rﬁ- #3)=V =0 (2.1)
has three complex roots with W 7= 0: ]
£, fe(/fo)>0, Jm (£,) <0 (2.2)
. J 2
m}:_—-—-'—;—£+1, ;Zﬂé--éikoz, mz-i‘!;ﬂ'——-/fc s (2.3)
o Lo ﬂk_;’.,ff, fofm? > 0. (2.4)
- z 2 o

With &= = 0 the root kjy = OJz/g [1]; computation of the complex root kg (situat-
ed in the fourth quadrant of the complex wave number k) is convenient by the suc-

cessive approximations method [13] 7
o9 =Y Loap (), n=r20..,
boey TF T Tvakijpe  "rrr w? n (2.5)
_ nﬁﬁﬁ‘ﬂv &NQ-V/G+d97?ﬂ, V=0

For the contraction operator A(k) we obtain the evaluation

\/7(4’/”,) - A Qf/z)l < I’fn....r- A'/z |£’ ’ ’ i (2.6)
SN —
A €{MI< 20‘(“/!2/&/2), A’eéa.]]mk|>0}. 2.7)

Here £ is equal to a unit length in the selected system of units. With K= 0 in a
volume of fluid under the free surface an arbitrariness in finding of the solu-
tions appears which is determined by functions of the type

-b'/ﬂI 4 ‘.”z:f .

g = (e , Le ; (2.8)
. | g = 0oL, Fe I, | (2.9
I = x+iy, i>0, v&l, (2.10)

Here

mE<h 1+ in, M7, K, w0,

(2.11)
Imi=ir, p=0, p "(x)=0, x=0.

The solutions (2.8), (2.9) satisfy the Laplace equation and the free~surface condi-
tion (1.3), (2.11). The solutions (2.8) are exponentially increasing in the fluid
volune under the free surface (2.10). The first solution (2.9) corresponds to the
wave process propagating from the depth of the fluid; the second solution (2.9)
determines the wave process propagating into the depth of the fluid. For the
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solution of (2.9) in the volume of fluid beneath the free surface (2.10) there
are two qualitatively different zones

y<=2m K/ K, (2.12)

y=-2mx /A, - (2.13)

In (2.12) the solutions of (2.9) increase expomentially; in (2.13) they decrease
exponentially. In order to satisfy the condition of decrease of the solution in
the entire region under the free surface of the fluid (2.10) it must be assumed
that C = D = 0, The arbitrariness in solution of the problem, supplied with the
root of the dispersion relationship kg, with M= 0, was studied in [1, 2]. With
K== 0 the solution, determined by the root k., represents a wave penetrating into
the depth of the fluid only in the region x>8,~ y<0, y/x > Re(kg)/Jm(kg). The non-
dependence of the Rayleigh dissipation coefficient M on wave scale makes difficult
the applicability of the model in [6]. We will examine the dispersion relationship
for a viscous incompressible fluid [15] (with a Laplace transform parameter
s = i) R

ghmthlep + Gu s 2 K mgh =0T IHWESE =0 )

where o= Kivivje , Rep>d.

The influence of viscosity is determined by the value of the last term in equation
(2.14), the factor p/(p + k)~1, k=>0; p/(p + k)~1/2, k=00 ; the mean is p/(p +
k)~3/4, k€ (k> 0, k=>00). :

Um(L, |
< .-d---.n). l..-....-‘. *edos= ,{/’q iz
/14992
'¥/4 b
]
'
10996
997 '
!
¥
'
L '
; f/Z( Hz
73 Vi
Felh,).L
&2

Fig. 1.

Using the mean value of the factor p/(p + k) for the wave number and making one
iteration in (2.14) (with an initial value k =a)2/g), we have an evaluation of
the order of magnitude of
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plwe) =~ ° (2.15)

Here € is the kinematic viscosity coefficient. The results of computations of the
kg of the dispersion relationship (2.1) are reflected in Fig. 1.

3;‘ We will study the form of the fluid surface 'Q_(x) for pressure disturbances
p (x) exerting a direct effect on the fluid surface. We will examine pressure in

the form ( ad( ) a . | ox
A) = x) , - , )
p, ) P (3.1)
9/2a, Ki<a.
p‘(l)‘ ,5‘.-0 inka
2 . K} ,
2, Ki>a, d 'f’z (3.2)
A ) Sl -
| —x, |x|<a, : ~. L (K’a)
P Jra? . . p'_‘ﬂ
* Lo, Ixi>a, T (3.3)
—4da ' l/rla S
P (X) - 5 . - 09 . o (3.4)
4 R ﬂ'(al? x?\; . -
Here

p,l-]’p (XVE 42k, n-= 1oy

4 is the Dirac delta function; Jl is a Bessel function of the first kind; Q is the
magnitude of the total force acting on the loaded water surface, related to a unit
width. Using contour integration [10] from (1.6), (3.1)-(3.4) we determine

N
ﬂ

7(X)= __4'5"(/0 ihe” S v 5, (w.é'”.“
P9 Ik /py 1_7:57 g s)*-v’(l-o!rfpg)

xl a0, #=/; |x|>a _a-zJ'-i

(3.5)

ko & -uf lxl

7(x) 2e™h? ke af”_vl“

P9 /+Ju(k /P9 7@

[9co.sra+ vsin v (/ - H’ "zﬂ

(3.6)
vy yv2 (7= °(:V2/f9)2

Applying the method of integration by parts to (3.5) and (3.6) we obtain asymp-
totlc formulas of the fluid surface type

'z.:tae-i&'xl Ja '/ {7_ .'5 ]} o

Z(X) ” { 2 PR LR Y E AL
apg /+J,(A',/P_y B2 A SR LD A
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‘
S

4 zscu(r;&j?-"ksxu wa 71, az")"i; AR
X) ~ ~ e 7- Lo
?’( ) { T X [ xzozrﬂ Ry

apg L1+0ek; og
8 | i) a1, J @*V-rs . s
~ —_— / Jeav-rw '
%(X) QP9 { /+J°(A’°2/P9 T Xz°z [ +4 . 292 ]}q 3.7)
; - ko2 = Ko 1X1 , Y92 2 .
7‘()(),.., q {u(;,ae 6: _ya z/ . I+J(2'|)a o.ai]};
apg F*JbM’,/_p_g T XY . x292 1]

x|\)—-—o<>, I%| a —=— o0 .
| / ’ (3.8)

Here 1, (x) (n = 1-4) correspond in number to the stresses (3.1)-(3.4); kg is the °
root of the dispersion relationship (2.2). Multiplying (3.7) by elwt, we draw the
conclusion that the solution consists of a travelling wave and level fluctuations.
The level fluctuations decrease exponentially with distance. The level fluctua-
tions for the pressure p’3‘(x) in tt%e region of parameters (3.8) are half as great
as for the pressures pf(x), pg, P, :

The principal terms of the asymptotic forms of level fluctuations for the pressures
* * * *

P1s Pys P coincided and for the pressures pf, p3» P4 have a single type —- the
type of tﬁe main terq of the asymptotic form of ievel fluctuation caused by a
deltalike pressure p1(x) = Q d(x).

In the considered examples the influence of the geometry of the pressure disturb-
ance on fluctuations of fluid level is manifested in the higher terms of the ap-
proximation of asymptotic forms over great distances (3.7), (3.8).

According to (3.7), (2.2), the wave terms decrease with distance exponentially, .

whereas fluctuations of fluid level decrease in conformity ‘to a power law, and at
quite great distances from the pressure epicenter only fluctuations of the fluid

level are observed.

The general form of the wave term is represented by the term outside the integral

in formula (3.5). Computations show that an increase in the frequency of the forc-
ed oscillations & (9, ® are fixed, M = 30)48/92 (2.5)) decreases the wavelength

A= 277/Re(k,) and the value of the amplitude factor exp (Jm(ko) | x|), Jn ko < O,

| x |= const. We will study the behavior of wave amplitude without taking into ac-
count the spatial variability factor exp(-1 k, |x |). For pressures (3.1)-(3.4) it
has the form :
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Do e g _dinka

S T 21+ 344, pg

- k) VA i (3.9)
ﬂ- - ﬂ B e ————— .

J /+"~°M.;!/P9 4 1+ Jd/rf/-pg

The values of the amplitudes An (n = 1~4) with each fixed surface tension value

X, according to the "compressed images" principle (2.6), in the region of the
complex wave number (2.7), can be investigated as a function of one complex vari-
able kp. The poles of the amplitudes A, (n = 1-4) are purely imaginary kg = X [p9l3x
and do not belong to the region of determination (2.7). In accordance with the prop-
erties of the harmonic functions [10] the Re Ay, Jm Ap values cannot attain their
extremal values at the internal points of the determination region and in the
neighborhood of the zeroes of their first derivatives have a saddlelike form. A
special case of internal points in the region (2.7) is real kg values ( H=0,

ideal fluid without dissipation). Hence we draw the conclusion that

|41, (B h) |+ Znm0, hmbet>0, nmrs. (3.10)

According to (3.10), the moduli of the amplitudes Ap, with allowance for dissipa-

tion, are greater than the moduli of the extremal values A for a fluid without

allowance for dissipation with equal wave lengths. Without allowance for dissipa-
- tion we derived the formulas

4

7 /9P -
< - L, = @= oo, g%yg”, 300
/9’ 2 Jo a

* 4 * Jol
o\ fF o Wan [EE

According to (3.11), the amplitude A (A =,0) has one maximum at the frequency o/ *
(&= 70 dynes/cm, A* = 2.9 em, £¥ =277/ * = 8.46 Hz). With large k.a values

the amplitude A4 is an exponentially decreasing function, and the ampgitude Aj

has an asymptote [11] in the form

/2 cos(koa = I7/4)
b~ VZka /+344%pg (3.12)

With small values kpa the amplitudes Ay, A3, A4 have an order of change equivalent
to A
l'

‘fz_l.q, l_”az </, </, u=0, f<@<oo;
5 171,

(3.11)

4. The force effect of a rigid freely floating ice platform of finite width at the
surface of a fluid with harmonic oscillations of pressure at the surface of the
platform is determined from solution of the problem
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- 44-0~ _:_l[- v{x) , IX"Q’ y=0; ) (4.1)
Yy

oo 9L L .
(x)= == £(x) » X =0, IXx|>a;
P yy ( P | .2

2
2 y Y -0! v-ﬂ’ 6"":(-' .
y ox“ady g 4.3)

Here p*(x) is the pressure of the ice platform on the water; v(x) is the velocity

B of points on the ice platform in a vertical direction (known value). By the method
developed in [1] the solution (4.1)- (4.3) is reduced to solution of an integro-
differential equation relative to the f(x) function (4.3)

) . v. . ‘:.:";;"7:': X a ) -
£)= 5:_’;‘, £0) - BF 0 [ h’(ol)a’ol-»—} Fe)en|=2|a (a.0)
X 14 R

-a

axt

The problem (4.3) is soluble in a class of harmonic functions with satisfaction of
the conditions . e ..

~V()+ F O+ 5 40 81 (Dm0,

N X -
M =f @+ i 0) =05 70p LIZAEL (P grp 8
Ty o e x3

VO +F0) +vu@) +8v2 (0)=0,
-y'(m¢f’(p)+0a’(o_) +4 ;;;'u (D=0, (4.6)

-y (0')+f'p} +vu(0) +6v”  (0)=0,

XXXXX

=v(r)+£(r) +-z'-)- Y(PM+8r. (F) =0 .
with

m,ren%, O0<rga, nm/l2...

4.7)

Here ‘;0 is the potential determined from (1.5) by a limiting Rayleigh transition
[1;, u =d¥/dx is horizontal velocity; mg 1s a real positive root of the equation
Y2 - n2(1 +B2nb). In the derivation of (4.5)-(4.7) we used the conditions of ab-
sence of arbitrariness (2.8), (2.9). The nonsatisfaction of the conditions .7)
in 1imiting cases a = 0, V= 0 (V= 0~m, = kg = 0) gives a solution in the

class of generalized functions. With a = 0 the solution has the form (3.1). With

V=0, v/e = h = const (4.1) the pressure consists of hydrostatic and capillary
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(two delta functions along the edges x = %a; a solution was obtained by the method
in [12]). The total force acting on the platform in a unit width } , with V=0,
is equal to - .

l]-.f PR (xydx = nylza/f [/+ \ [P—;?z] - (4.8)

Here h is the depth of platform submergence. The contribution of capillary pres-
sure to the total force Q with large a is really small. A numerical analysis of
the problem (4.1)-(4.3) was made by the trapezia method [4]. The results of com-
putations of pressure and the modulus of wave amplitude are given in Figures 2 and

3. :
(%) [ pok
48
¥ ]
A
4
9
493 .
4949 i . @
-4 \ 196 2% 484 &¥ gﬂa [Z
-08 Fig. 3.
46/
a6
=42 . -
Fig. 2.

With small values of the parameters G}Za/g, /e gaz the pressure developed at the
fluid surface by the ice platform is close to hydrostatic (Fig. 2). The high-fre-
quency asymptote of the dynamic part of the pressure is analyzed using the for-
mulas (3.3), (3.9), (3.12). The results of the work are in qualitative agreement
with [1, 2]. The main conclusion is that pressure distributed over the entire area
of the fluid (3.4) causes traveling waves of lesser amplitude than concentrated
pressures when there is an identical total force.
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UNSTEADY FLEXURAL-GRAVITATIONAL WAVES FROM IMPULSE DISTURBANCES UNDER ICE
COMPRESSION CONDITIONS

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 8 Apr 80) pp 65-73

[Article by A. Ye. Bukatov and A. A. Yaroshenko]

[Text] Abstract: A study was made of the process of
development of waves from impulse disturbances
in a sea covered with ice. Ice compression and
dilatation are taken into account. It is demon-
strated that ice compression increases and dilat-
ation decreases the time required for waves to
pass through a stipulated point. In additionm,
ice compression can lead to the formation of
compression waves not arising in the absence
of compressive forces. The conditions for gener-
ation of these waves were determined and the
dependence of their elements on the magnitude
of the compressive force were determined.

Unsteady oscillations of the ice cover in the absence of dilatational and com-
pressive forces were investigated in [1-3]. The development of flexural-gravita-
tional waves, caused by periodic disturbances under conditions of longitudinal
dilatation, was studied in [4], and in the case of longitudinal compression in

[5]. '

In this article we give an analysis of the influence of longitudinal compression
and dilatation on waves from Impulse disturbances. As the wave generator we will
examine a small displacement of a sector of the bottom of the basin occurring with
the vertical velocity

weaf(x)y @)y w (@ =0, (1.1)

beginning from the moment in time t = 0. The investigation was carried out on the
assumption that prior to the onset of exposure to disturbance the fluid is at
rest and the ice-water surface is horizontal. The velocity potential ¢ of wave
movement of the fluid under conditions of léngitudinal dilatation [2,6] is de-
termined from the equation
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Dex* G20 =0 -He2<0, |x|< oo ' (1.2)
the boundary and initial conditions . . -
- ondicions , )
J Z;xxx , alZu""?’z“"' Z" ] 4, = with z = 0,

¥, = wwith z = -H, ‘PZ = 4. withz =0, 9= 4=0 with t = 0. (1.3)

Here

N T AR 4 pg T T RAr=pd)
E, h, Pl, |+ are the modulus of normal elasticity, thickness, density and Poisson
coefficient of ice; P is fluid density; Q is the longitudinal dilatational force

imparted to a unit width of the ice plate; / is flexure of the ice or the rise of
the ice-water surface.

- Applying the Fourier transform for x and the Laplace transform for t for solution
- of the problem, we find T Y
/

Z- 2 T ’ f".) A’(’:f)“’xdf‘qﬁ-—-—' ..-_2.&2 gd)e-(fa/d,
VIZ ., ChrH cdm <2

bmlvd . rgthrh, Bym g B (PYERPH: Gueg, P2y rt

where f(r) is the Fourier transform of the function f£(x); ¢ (%) is the Laplace trans-
form of the ¥ (t) function. Hence for ¢ (&) = 6 (t - tg), tg>0, where J () is
the Dirac delta function, we obtain . e .
7= / S | £F(r) [ 2,4.1{(/‘!,(7?)* ’Hxl./‘fzf.") ].4/’.’
i z\[i“o;cw S T n
- oL ol
o= Fignss Ve, Ve Tirye (6, /6)7
Here the subscript 1 on t] = t = tg has been omitted. From (1.5), using the station-~
ary phases method, we find an asymptotic expression for Z . The presence of station-
ary points for the phase functions Ml’z(r) with fixed V is determined by the be-
havior of the function T'(r). Its dependence on the magnitude of the dilatational
force is similar to the dependence of the frontal velocity of nonattenuating waves
generated by disturbances which are periodic in time. It was studied in [4] and is
illustrated there in Fig. 2. It follows from the data in the figure that My with
¥~1<ys does not have stationary points (true roots of the equation Mp'(r) = 0).
For V71> u, and up< vle uj the stationary points will be r = 1y and r = r], r =
ry if x>00r r = -ry and r = -1, T = -I, if x< 0. The conditions for existence
of the stationary points for Mj(r) are the same as for Mz(r) and the stationary
points for M2 differ from the points for M; only in sign.

(1.4)

(1.5)

_ Here u; = lim T'(r) = /gH; uy = T'(rg); rg is a positive root of the equation
— r—- 0
L"(r) = 0, the stationary points r = try are governed by the elastic forces of
the ice cover.

Thus, after use of the stationary phases method we find
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Accordingly, the wave Zz, caused by elastic forces, arrives at a fixed point earl-
ier than the gravitational wave Zl, in this case not having a clearly expressed
leading edge. The leading edge of the gravitational waves moves from the epicenter
of the disturbances with the velocity uj. The trailing edges of the elastic and
gravitational waves coincide with one another and move with the identical velocity
u,, dependent on the ice thickness, the modulus of normal elasticity of the ice

and the magnitude of the dilatational force. A large dilatational force also cor-
responds to a high velocity of the trailing edge. Qualitatively there is the same

- character of the dependence of ujy on ice thickness.

In a general case it is Impossible to find an analytical expression for the sta-
tionary points (roots of the equations M] ,(r) = 0) as functions of x and t, but
numerically they can be found with the reduired degree of accuracy with stipulated
x and t and thus it is possible to form a quantitative picture of the change in

with the course of time at an arbitrary fixed point and the pattern of waves at
a fixed moment in time.

‘
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Fig. 2.
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Changing with an adequately small interval r and taking into account that in the
intervals (0, rg) and (xg, 00) the dependence between t and r is mutually unambig-
wous and that time increases with an increase in r in the interval (0, rg), but
with an increase in r in (rg, © ' decreases, it is possible without finding the
roots of the equation M 2(1') = ( to employ formulas (1.6) to form the pattern of
b | behavior of 27 and & 2 %ith time at a fixed point, computing t using the formula
- t = x t'l(r). Similarly, we obtain the dependence of 7 and 22 on x at a fixed

moment in time. In this case x is determined from the expression x = t Z(r). The

distributions of [ relative to x obtained in this way for t = 60 sec and rela-
tive to t for x = 103m in the case of a deltalike displacement of a sector of the

Fig. 3.
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bottom with values of the parameters E = 3-109N/m2, p= 0.34, P = 870 kg/m3, H =
10 m are shown with an accuracy to the factor a.l1l0™% in Figures 1-4. The curves
1-4 in Figures 1, 2 are given for h. = 1 m. They correspond to dilatational forces
0, 1.68-106, 2.52:106, 3.03.106N/m. However, the dependence of the distribution of
1 9 relative to x and t on ice thickness (Figures 3, 4) is illustrated in the case
Q = 0. With other Q the pattern is qualitatively similar. The curves 1, 2 in Fig-
ures 3, 4 relate to thickness of the ice plate 1 and 2 m.

4

10
B 5

L7 2
0 “gvﬁv/l ; yaN AA
2 \j Ve \/ 2707
_ =5
) -w] U
Fig. 4.

The extreme right values of each of the curves in Figures 2, 4 correspond to the
moments in time close to the moment of passage of the trailing edge of the waves
through a stipulated point. The extreme left points of the curves in Figures 1, 3
characterize the amplitude in the neighborhood of the trailing edge at a fixed
moment in time. In this neighborhood the asymptotic formulas (1.6) do not apply,
but the / 2 computed from them assumes an infinitely large value.

An analysis of the data in Figures 1-4 shows that with the course of time the ver-
tical amplitude of the oscillations [ ,(t) increases. The time for passage of the
waves (1.6) through a stipulated point decreases with an increase in the dilata-
tional force. It also decreases with an increase in the thickness of the ice plate.
At a fixed moment in time the oscillations caused by elastic waves attenuate with
distance from the epicenter of the disturbances both with an increasé in h and with
an increase in the dilatational force. The influence of longitudinal dilatation
with a fixed force is manifested more clearly in the case of a lesser ice thick-
ness.
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2. Now we will analyze the process of development of waves arising under the in-
fluence of small vertical displacements of a sector of the bottom under ice com-
pression conditions [2, 6, 7]. The generated wave movement is determined by the
velocity potential # satisfying the Laplace equation (1.2), initial and boundary
conditions (1.3) at the_bottom and

- . , o
D axxn * 4/1»(*”/2“* ;"'7"2'”' (o™ Y,
at the undisturbed ice-water surface.

Solving the problem as in the case of longitudinal dilatation, for ¢ we obtain the
integral representation (1.4), where it must be assumed that f1=1-Q 2 + D
r4, For a deltalike function ¢ (t) the integral (l.4) is reduced to (1.5}, which
we compute by the stationary phases method with Qi< 2_/Dl, necessary for stability
of the ice plate [2].

Assume that Q)< Qq, where Qp is determined by the same expression as in [5]. Under
such a condition the phase functions Mj, 2(r) behave qualitatively the same as under
longitudinal dilatation conditions. This is attributable with the given condition

- to the qualitatively similar behavior of T(r) for dilatational and compressive
forces. In the first case T (r) coincides with 6(r) in Fig. 1 in [4], and in the
second case with O (r) in Fig. 1 in [5], where the upper two curves are given for
Q,, satisfying the condition Q;< Qg. A comparison of these figures, and also Fig.
27from [4] with Fig. 4,b from J[S], shows that in this case the condition of existence
of stationary points for the phase functions Mj o (r) in the case of compressive
forces Q<pgQp is the same as in the case of dilatational forces. Accordingly, the
type of ice-water surface under ice compression conditions with Q<p4Qp is deter-
mined, as in the case of dilatation, by formulas (1.6). A greater compressive
force corresponds to a lesser velocity up of the trailing edge of the A 1 and VA 2
waves. The velocity uj of the leading edge of gravitational waves 7; is not depen-
dent on Q. The dependence of uy on the magnitude of the compressive force is clear-
1y seen in Fig. 4,b in [5], where with Q< Qqp it is characterized by minimum values
on the upper two curves u(r) and T'(r), cited for the compressive forces 0 (upper
curve) and 1.68-106 N/m respectively.

The influence of ice compression on the values of the local phase velocities (T (r)
/r)and lengths (27J7/r) of the developing waves is illustrated in [5] by the upper
two curves in Fig. 4,a and Fig. 4,b respectively. The segments of the curves to
the left of the minimum in the second of them are related to Zl’ whereas to the
right -- to 7 ,. It can be seen that with fixed V= t/ | x| the local length Ay =
271/ry of the 7 j wave increases, whereas ?\2 = 2ﬂ/r2 of the 2.2 wave decreases
with an increase in the compressive force Q. We have Jg<A; <0, 0F< AZ < Qs
where ?\0, equal to 2§ /rg, decreases with an increase in the compressive force.
The gravitational 7 1 and elastic ZZ waves with fixed local lengths have greater
local phase velocities with a lesser compressive force. We note that the influence
of the longitudinal compression on the examined wave characteristics is the oppo-
site of the influence of longitudinal dilatational forces on them.

For an observer at the fixed point x the time of passage of elastic and gravita-
tional waves increases with an increase in the compressive force. The greater the
Q value, the trailing edge will be at a lesser distance from the epicenter of the
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disturbances at a stipulated moment in time. The vertical amplitude of oscilla-
tions of the functions 7 7(x) and 7 z(t) decreases with an increase in Q.

Assume that Qg< Q1<2 \/ﬁ_ Then for x>0 the phase function Mj(r) = r + v (r) has
one (-ry), two (-ry, -rp) or four (-rj, -rp, rj, ry) stationary points, the Eciots
of the equation Mi(r) = 0 with satisfaction of the conditions V'1>u1, up< ¥y t<uy,
y-1 <u, respectively. Here uj =/:q_ﬁ; up = - '(rg), V=t/ Ix |; 0<ri< Iy<T4<Ty3
rg is the positive root of the equation T"(r) = 0; T(r) is determined by formula
(1.5), where it must be assumed that 91 =1-Qr-+ Dlrl’. For the phase function
Mz(r) =t -V T'"(r) under similar conditions and x>0 there will also be one (r3),
two (r,, rp) or four (rj, ry, -rj3, -ry) stationary points. For x<O the M > func-
tions !1iave the form M;(r) = -r + VT(r), My(r) = -r -y¢(r), and their stationary
points differ from the stationary points in the case x>0 only in sign. Taking
this into account and considering f(x) to be even, from (1.5) we find

¢ '
/
3, a(m_> : \|x|> U’.tf

. ) < x| =< ut, -
;= ‘;.Z/«*-o(m) Grs =gt

4 / -
0"——- A I&I ut-
L;zﬁ <m) ~ A

/ - . J?(r") oty 12
- oL, Ame—tmete | VT(7) | 7
{x 1x1 d (’;‘) €0 % ‘ 5,(1‘) chrH [/ ) ] '

w7

' ' £ T 2
PA" IXI— tT(’;)‘(-/) T ’ A'./QZQ

oL = } R
T
K AL tz'("‘)f(-.f)‘ o A=
. /s A-zlé'
/ =
-/ ﬁ- ’.J.

It can be seen that wave movement is formed by one, two or four waves. The wave {

is gravitational, Z 2 is elastic and Z3 and Z, are caused by ice compression. The
leading edges of the compressive waves move from the region of imparting of dis-

tu-bances with the identical velocity u,. A greater compressive force corresponds
to a greater velocity uj. This also fol%ows from Fig. 4,b in [5], where u; is char-
acterized by the modulus of the minimum value on the dotted segments of the curves
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u = T (r) with the numbers 3, 4, the upper of which corresponds to a compressive
force 2.52-106 N/m, whereas the lower corresponds to a force 3.03-106N/m. Since

the generated waves do not have trailing edges, the greater the Q; values, the
greater will be the region covered with 2 s 24 waves. The compressive waves move
toward the epicenter of disturbances with iocal phase velocities equal to v3 4™
$1r3t4)/r3’4. The character of the dependence of v3 4 on the magnitude of the com-
pressive force is shown in [5] in Fig. 4,a by the dotted segments of the curves

3, 4. With fixed vV the local lengths A3 = 277/x3 of the 7 3 wave are greater than
the lengths A4 = 27 /ry of the 74 waves. In addition, 2> A3> A0 7A47 A2.

The leading edge of the gravitational waves Zl is not dependent on Q. It is, as
for Q1< Qp, equal to ‘/91{.
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INVESTIGATION OF TSUNAMI WAVES IN THE NEIGHBORHOOD OF ITURUP ISLAND

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
- VNUTRENNIKH VOLN in Russian 1980 (manuscript-received 7 Jul 80) pp 74-78

[Article by R. A. Yaroshenyal

[Text] Abstract: An attempt to find a correlation
between the height of tsunamis at the shore
and in the open ocean (at the tsunami focus)

- for Burevestnik village (Iturup Island) on
the basis of computed and actual data on the
height of tsunamis is described.

A complexity in predicting the height of a tsunami wave is that at the present
time there is no real possibility, on the basis of the known magnitude of an
earthquake, to obtain the necessary information on the field of wave disturbances
at the focus of a tsunami. Measurements of the height of a tsunami wave at the
focus are unavailable. However, in [2, 3, 7, 8] an attempt is made to establish
a correlation between the magnitude of an earthquake and the height of a tsunami
at the focus,

As a result of modeling it was possible to find the dependence between the basin

_ depth, the maximum displacement of the bottom and the maximum rise at the source
[7]. In studying the Niigata tsunami a correlation was established between the
magnitude of the earthquake and the wave height at the source [8]. On the basis of
an analysis of the results of theoretical investigations by Takahasi, Ichiye, Kad-
shiura, L. N. Sretenskiy, A. S. Stavrovskiy, it was demonstrated in [3] that in
the region of the tsunami source the wave height can be assumed equal to the val-
ue of the vertical displacement of the bottom sector in the region of the earth-
quake focus. Source [2], in the form of a_table, gives the dependence of tsunami
height at the focus on earthquake magnitude and focal depth.

We will examine an analytical-numerical method making it possible to compute the
height of the tsunami wave at the shore. The model of a basin filled with a fluid
consists of a region of an ocean of a constant depth hl, transitional to a zone

of variable depth hz(x) and ending at the shore in a vertical wall. The x-axis is

directed from the open sea to the shore, the z-axis is directed upward, the y-axis
is directed along the shore. Within the framework of this model, using an analyt-
ical-numerical method, the tsunami wave heights are computed along the shore.
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In this article, for Burevestnik village (Iturup Island), on the basis of com-

puted and actual data on the height of a tsunami, an attempt has been made to

find a correlation between the height of a tsunami at the shore and in the open
- ocean (at the tsunami focus).

In the approximation of the linear theory of long waves, with allowance for the ac-
tion of Coriolis force, the system of equations has the form

a - 2&/?--—-9()‘ , y +2wu "'Ny 7 -..[(aﬁ.) +(V/z) ] 6
where 4 is the rise in the level of the free surface; u, v are the components of -
horizontal velocity; 2w is the Coriolis parameter; h is basin depth (h -- in the

- open ocean, h, -- in the shore zone).

The rise of the free surface for a tusunami wave ruhning in at an angle from the
open ocean has the form

{= ”ei.'(ﬂzxwu Jt) . (2)

where A is the amplitude of this wave; m, n are the components of the wave vector
on the x, y axes; b is the frequency of this wave. Using the periodicity condi-
- tions and seeking a solution of system (1) in the form

{[Z?Z uv Z} ex,Dl (/ZY Jt)} - (3)

for determining the rise of the free surface in a region of variable depth Zz and
in the open ocean Zl the ordinary differential equations are

gk« -4 ghag =0, ()

' 2wk 4 2_ 1 (2 4m?\] =

Solving equation (4), we obtain

; ; 7i- 4wt 2
= wmx E"”lx' mm comermasanmans = ST ’
,=#h€ " 5 V 94,

where Al and By are arbitrary constants. The general solution of equation (5) is
written in the form

¢ = A, 9’(X) * 52 ;(/(’x)._

where Aj, are arbitrary constants; ‘7‘7 and lﬂ are two fundamental solutions of
- equation (5% determined numerically by the Runge-Kutta method.

For the rise in the free surface in the open ocean Zl and in the coastal zone 1_2
we obtain the expressions

e imx+ny-0¢) [Emxrny—Ot)

4-.819 ’
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i 7, -[/iztf(x) + 8, V(X)]E i(ny—6¢t)

- Here A; is the amplitude of the wave arriving from the abyssal region (we will
consider it to be fixed); B, is the amplitude of the wave reflected in the abys~
sal region; the expression in brackets is the amplitude of a wave (dependent on
x) moving along the shore in the coastal zone.

In order to find Bj, Ap, By we will use the continuity conditionms for the free sur-
face profile and the horizontal velocities at the boundary of regions of constant
and variable depth, and also the condition at the vertical wall. These conditions
make it possible to obtain a system of three algebraic equations whose solution
gives the sought-for values.

For Burevestnik village the proposed method was used in computing the rise of the
level surface with approach of the tsunami wave to the shore. The basin model re-
flects its longitudinal section perpendicular to the shore. The depth of the open
ocean is h; = 4 km. The zone of variable depth is broken down into regions whose
depth and extent in each case with approach to the shore are hy = 2, 1, 0.5, 0.4,
0.005 km; Ly = 60.5, 16.5, 242, 99, 143 km.

The computations were made for waves whose amplitude in the open ocean was 1 m,

the periods being 107, 40, 33 minutes. The choice of periods is explained by the
observational data. It is known [1, 4] that with passage of a tsunami precisely

these periods predominate in the spectrum of ocean level fluctuations.

Source [4] gives the spectra of ocean level fluctuations with the passage of the
close and distant tsunamis of 28 March-January 4, 1964, 14-16 May, 1966, 16-18 May
1968, 11-13 March, 1969, 22-25 September, 1969. Here it is also indicated that
with the passage of distant tsunamis a long-period component appears in the spec-
trum which is absent in the spectrum of variations caused by near tsunamis.

The computations indicated that with the arrival of a tsunami wave from the open
ocean at an angle to the shore, with an amplitude of 1 m and a period of 107 (dis-
tant tsunami), 40, 33 minutes (near tsunami) a wave is propagated along the shore
whose amplitude is greater (by 607 for a distant tsunami and by 70% for a near tsu-
nami) than the amplitude of the arriving wave. Since the wave is propagated along
the shore, it can be regarded as an edge wave whose amplitude is 1/2~1/4 of the
total amplitude.

In [6] a study was made of the record of level variations during the passage of
waves during the Iturup tsunami (1958, 1963). It was demonstrated that the varia-
tions include a special component whose transformation in the transformation pro-

_ cess is characteristic for edge waves on the shelf. The amplitude of these waves
is 0.5-0.25 of the total amplitude and the maximum value is observed in those
cases when the total group of waves approaches at an angle to the shelf. Thereby
a wave component is excited which moves away from the shore along the normal with
an amplitude up to 1/3 of the magnitude of the edge shelf waves.

Taking into account the conclusions in [6], we will assume that the maximum ampli-
tude with approach of a tsunami to the shore, having an amplitude in the ocean of
1 m, will be 7 m (for a near tsunami) and 6 m (for a distant tsunami). A wave will
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be reflected from the shore whose amplitude is 0.6 m (for a close tsunami) and
0.5 m (for a distant tsunami).

By comparing in situ observations of height of the wave (0.103 m) registered by the
tide gage at Burevestnik village on 12 August 1969 with the passage of a tsunami
(earthquake magnitude 8.2) [5] with the computed height (6 m),with the arrival of
a wave with the amplitude 1 m from the abyssal regionm, for the actual tsunami we

- obtain an amplitude of the arriving wave or the wave height of the wave at the
tsunami source of 0.2 m. Thus, the amplitude of the tsunami wave with approach
to the shore increases by a factor of 6.

For other actual tsunamis [5] (28 March 1964, 15 May 1966, 16 May 1968, 23 November
1969) there was registry of amplitudes of variations several times less (0.42,
0.15, 0.2, 0.45 m respectively) than during the tsunami event of 12 August 1969;
accordingly, the height of the tsunami at the source for them will be considerably
less (0.02-0.1 m).
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GENERATION OF SEISMIC WAVES BY TSUNAMI WAVES PROPAGATING IN OCEAN WITH
UNEVEN BOTTOM

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 3 Apr 80) pp 79-89

{Article by I. V. Lavrenov]

[Text] This article is devoted to the problem of
short-range forecasting of tsunamis, The mech-
anism of generation of seismic waves in the
earth's crust by tsunamis is examined. The
resonance conditions for generation are re-
vealed in an examination of the interaction
of tsunami waves with irregularities on the
ocean floor. The spectrum of Rayleigh waves
is constructed in a case when tsunamis are

. propagated in an ocean whose bottom relief
changes in one direction. The radiation of
seismic waves has a directional character.

The problem of seismic waves generated by tsunamis has a direct relationship to
the problem of short-range forecasting of tsunamis. This problem was raised for
the first time in 1956 by L. N. Sretenskiy in [1]. Then it was examined by S. S.
Voit in [8]. In these studies it was assumed that tsunamis during movement in
an ocean with an elastic plane bottom excite seismic waves which are propagated
considerably more rapidly than tsunamis. On the basis of observation of seismic
waves it would be possible to judge the presence and character of tsunamis,
thereby obtaining preliminary information for some time prior to the arrival of
tsunami waves on the shore.

In source [2] a study was made of seismic waves generated by a tsunami, taking
into account an analysis of elastic displacements of the earth's crust caused
by tsunamis propagating at an angle to the shoreline.

In this article we examine the possible mechanism which would describe the gen-
eration of seismic waves by tsunami waves propagating in an ocean with an uneven
- bottom.

1. Assume that in a rectangular coordinate system (x, ¥y, z) an elastic medium with
z2-h(x,y,2z) 1s stipulated which is covered by a layer of homogeneous fluid -[hg
+N(x,y,t)< z<-h(x,y,t), where h, is the mean constant depth of the basin; h(x,
y,t) is a function describing bottom relief; Q(x,y,t) is the deviation of the
73
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free surface level of the fluid from the position of equilibrium (Fig. 1).

We will examine the wave movement of such a dynamic system. We will assume that
bottom elasticity does not exert a significant influence on the propagation of
fluid waves and that the height of the bottom irregularities is small in compar-
ison with the mean depth of the basin lh(x,y,t) “\(’ 1 and the slopes of the irreg-
ularities are small lgrad h(x,y,t)l((l.

On these assumptions the problem of wave movement of a fluid leads to the problem
of wave propagation at the surface of a fluid in the presence of an uneven bottom.
We will assume that the wave movement of the free surface of a fluid is described

by the theory of long waves
. . . z A . X B v : . .. - -
22250 (mg ) =0,

where H = hg[l + 8(?)], h = hOE (?); Yy 1s the horizontal differential ogerator; 9
ig the acceleration of free falling; r is the horizontal radius vector r“ = x% +
y-.

The effect of the ocean on the bottom will be simulated by a system of normal
pressures applied to the bottom from the direction of the ocean. Since an uneven
bottom is examined, this boundary condition, related to the plane z = 0, gives not
only a normal component to z = O

b= =P=-9975 - 1.2)
but also a tangential component
4 . 5:'{9:::’ 0}:‘} ",i_P»Vn £y : » (1.3)

where f) is fluid density, wave pressure at the bottom P is taken in the approxima-
tion of hydrostatics.

Dynamic movements of the elastic medium relative _t’o__)the position of equilibrium
will be described by the vector of displacements u(r,z,t) = {Ux’ Uy, Uz}, con-
forming to the equation .

' i

: ( ?,q >ym¢ LRV ES fr 7T (1.4)
where W and A are Lamé constants; Pr is the density of the elastic medium, which

we will consider constant.

Thus, a system of linear equations with variable coefficients (1.1)-(1.4) is ob-
tained. The wave equation (1.1) can be considered independently of (1.2)~-(1.4).
The solution of the remaining system of equations is obtained using equation
(1.1).

The problem of the scattering of tsunami waves in an ocean with an uneven bottom
has already been examined in the literature. For example, in [3] its solution was
obtained in the approximation of the theory of long waves. Accordingly, we will

not dwell on a detailed investigation of solution of equation (1l.1). We note only
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that the presence of bottom irregularities, whose height is considerably less than
the mean depth of the ocean, leads to an attenuation of the mean wave field of long
gravitational waves.

Fig. 1.

2. We will examine the problem of excitation of waves in an elastic homogeneous
half-space by random boundary stresses.

Assume that at the boundary of a homogeneous elastic half-space at the time t2 O
the following stress is applied

E(F.t) = {6:.8,.0,)

Gomn( )| g mp (foe ),

- (2.1)
U (ow 8 4 ou >| '
b=ty S22 (g7 T ) -
Prior to the initial moment in time t< O the elastic medium was at rest

S I=4f=0 . (2.2)

The boundary conditions (2.1) in combination with (1.4) and zero initial data con-
stitute a’clpsed system of .equations.

The vector of elastic displacements T will be represented in the form of the sum
Twmgrad ¢ +V
graa gt (2.3)

where div V = 03 ‘-}" is scalar potent131 We will rewrite (1.4) with (2.3) taken
into account - AU Y
A"a az—-'?— AV,:J W{ A,n&’-a-?jz-y

L dV éV a ¥ oV
aVz 5’5” S PR ity sl

(2.4)
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Here a = (PT/) + 2}-“)1/2 and B(PT/,“ )1/2 are parameters inverse to the velocities
of the longitudinal and transverse waves. The boundary conditions assumed the form

- 2y oV, gy 2
5, = 2 ., 2 _ 4 . ay,
Xz /“( ) z=o’0}z—-ﬂ<23—g-y 3 —_LJZ +

oxo2 " 97 F;
= z_ 2 o b i VZ
o' /"KJ 2“)?‘:‘;*2?‘5‘ i
e
Assume that 6(?,:) is a hgmogeneous random field with a zero mathematical expecta-
tion of the mean value<8(Z¥,t)> = 0. Then 6;» ¥, V, and Uy (in order to shorten

the writing we have introduced the indices i and n in place of x, y, 2, 1 = 1, 2, 3;
n=1, 2, 3) will be represented in the form of Fourier-Stieltjes integrals

(2.5)

A
- Ty

20

(2.6)

% G)=[e Tik(D).
o z,{)-s AT (F22), Y, & z,.»,‘)-=Se"i’.d?",,(I,z,t) : (2.7)

t(Foz, 9 - S,,-;r;,.zz,, (Fz.2). 2.8

-> > ~ ~ ~ ~
Here k is the horizontal wave vector k = {k', k" }; d Gi, d ¢, dv,, du,,
are the components of Fourier-Stieltjes stresses, potentials and displacements.
The initial functions d«}' and dV, are obtained in the form of Mellin integrals as
a result of substitution of (2.6) and (2.7) into (2.4) and (2.5)

(7 z,'t)-igij? (o) 4% e dp,
| (2.9)

A

d=(/+ %‘_});’) ,/2; A= (/-o- %:’#3 ,/2_. “

We will take the residues at the poles of the integrands (2.9) with integration in
the plane of the complex variable "p." As a result we obtain expressions determin-
ing the components of displacement of the elastic medium in a Rayleigh wave

d&',,(i, Lt).—.t Cin (/?, z) 5 sin w(t-r) a7 Q‘(, r}'ufv:k, (2.10)

o=

GEHT :jf"y (7o) 2%,
i

where

where v, is the vglocity of the Rayleigh wave, equal to 0.9194/4 (on the assumption
that Ft="2); Cin(k,2z) is a tensor, setting in agreement the components of the vector
U and the components of the vector 6 .
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We obtain the correlation between the energy characteristics of the random field
of the limiting stresses and the corresponding characteristics of the field of the
Rayleigh wave. In the space of wave vectors ¥ we introduce the spectrum of the
field of stresses with the time shift t

by (“") <¢ (8.9 ;{?‘(5.}',41; > (2.11)

Here the brackets denote theoretical-probabilistic averaging, the asterisk denotes

a complexly conjugate parameter. With i = j the components of the tensor Dys repre-

sent spectral functions of each stress component. With i % j the components of

D;: are the cross-spectral functions of the stress components, which, speaking in

general, are complex. If the stress components are stationarily related, the compon-
- ents of the Dij tensor are not dependent on the initial time tye

We introduce the spectrum of components of displacements in the Rayleigh wave

S B2 ) = SeEa(Botoz)éln (Bekt2)>, (2.12)

in which we will examine only the autospectrum S,
Kronecker symbol).

= Jdnn Spm (here 4o is the

-
We obtain the correlation between Sn(k t, z) and D (k, t), using (2.10), (2.11)

and (2.12).
5 (Bez)= iifm (Fe) ch R2)z; Re) s (2.13)
rf .

where it n -

T (Zt) - S S 2, (F, t'-t')[:inu(t—r’):inw@-—t?] va:‘x;'dz" =

00
Y
§§1),j (Brez)4 [cos o (- t) ~cos w(2¢-% -z")] ::t';g: .

We will replace the variables T' - T" =T, T' + T "=€ and carrying out' one inte-
gration, we obtain an asymptotic expression for JiJ (k t) with Jt>»> 1

2 (Re) =4 (o) 0y () wwwr | g

For (2.13) with t—> OO we obtain

S, (54 ERE ‘Zi tn(R2) ‘/ﬁ (f'z)f"f(z Un.gr" (2.14)

where

7y (EIJ)’# g by (1: t) cos wrd? . ‘ (2.15)
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It follows from expression (2.14) that a resonance (linear in time) increase in
the spectrum of Rayleigh waves occurs only in a case when in the spatial-tempor-
al spectra of components of the stress field there is a set of frequencies and
wave vectors corresponding to the dispersion relationship for these waves. A
contribution to the spectral density of Rayleigh waves is made by both the auto-
spectrum of the stress field, but also the cross-spectrum of stress components.
Formula (2.14) is a singular generalization of [7] in which the generation of wind
waves was studied.

In a linear formulation, without allowance for topography, the pressure field act-
ing on the bottom does not afford the necessary conditions for the generatigy of
seismic waves since in the latter case the fregyenc w and the wave number k are
related by the dispersion relationship W2 = gk th khj, which does not allow the
phase velocity to exceed the /3h0 value. Accordingly, the pressure spectrum does
not contain the totality of frequencies and wave vectors corresponding to Rayleigh
waves. We note that the rescnance conditions for the generation of seismic waves
are revealed not only in an examination of interactions of surface gravitational
waves with bottom relief, but also in an analysis of nonlinear wave interactions
between gravitational waves [5]. However, the mechanism of generation of seismic
waves in the latter case is less effective for tsunami waves affecting with their
wave movement the entire water layer of the ocean.

The mechanism of generation of Rayleigh waves, examined above, gives the same
local increase in wave energy as that generated by the quasistationary and quasi-
homogeneous field of limiting stress. In the latter case the spectrumdﬁij(f;u))
from (2.14) is also a function of distance and time. The spectrum S,(k,z,t) is de-
termined not only by expression (2.14), but also by the energy related to inhomo-
geneity and nonstationary character of the distribution of the external field
spectrum. Equation (2.14) is written in a more complete form, as was demonstrated

in [4]. ) ..
G- +ii fo +h G =n@er), (2.16)

where Tn(Et t, ?i z) is the expression in braces in (2.14); X{ and ki are the com-
ponents of the r and k vectors. In the absence of external forces (2.14) undergo-
es transformation into the equation derived in [6], the essence of which is that
the energy spectrum remains constant along the direction of group velocity. In the

absence of wave refraction the term
k; 950
oki

disappears. Since the group velocity V; = r remains constant, equation (2.16) can

be easily integrated - = v ies (Ft.7

el o d=fn (B A T 2005 Eui)

_ & (2.17)

where rg = T - Vg (t - tg)
As an example of the integration of (2.17) we will examine a simple case (Fig.2)
where T, is constant with respect to both t and T in some region with the given
area Q and is equal to zero beyond its limits. The mean distance from the genera-
tion region to the observer is R, ¥, is the angle between the ox-axis and the di-
rection to the center of the region. If ABO is the path of propagation of the Ray-
leigh wave with the wave vector k, then the spectrum S, increases linearly from the
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initial point A (where we will assume that S, = 0) to the maximum value l(g)Tn/VR
at the point B, where the propagation path of the considered wave emerges beyond the
limits of the generation region (the distance RB is denoted 2(9 )). On the remain-
ing segment of the path BO the spectrum of seismic waves 8, remains unchanged.

Since here it is possible to convert from the variable ¥ to o and & (where 4 is the
angle between the direction of wave propagation and the ox-axis), then

85 (Ft,2)=5,(0,647 . (2.18)
y
¢
A
(1)
P st
8
§
gl e X
Fig. 2. Schematic representation of generation region and Rayleigh wave propagation

path.

We introduce the new spectrum

L :
£ (@, z.y‘,)-{;ﬂ 5 (w,6,2)a6,

which we rewrite in the form

(L
5 (u. 2,4,)= i'f’)' S 46) 1, (W,ﬂ,z) a5, (2.19)
4

The results are applicable only with (B)» 2n/k.

The problem of finding the spectruym of Rayleigh waves is reduced to a determination
of the stress field spectrum F (k w), capable of generating seismic waves.

- 3. We will examine the boundary conditions in the formulation of the problem (1.2)
and (1.3). We will investigate only those components of stress which contain spec-
tral components with high phase velocities satisfying the resonance conditions of
generation of Rayleigh waves. Accordingly, we will limit ourselves only to the tan-
gential stresses (1.3), since the normal component of stress (1.2) is not capable
of generating seismic waves by reason of the factors indicated above.

: We will write an expression for the spectral intensity of the field of shearing
stresses (1.3). For this we will expand the wave fields n (?t) and £ (r) (as this
was demonstrated in [3]) into Fourier integrals. Applying (2.11) and (2.15) and
limiting ourselves only to the main term, containing the small parameter £ (r) in
the lowest power, we obtain
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re 2 e ~ i)t &\ 4/
fg (F0) =8 (g4 (o (B) @) ™" 2 &) 4% »
2 by =%) 8 (w-w,) ak aky , (3.1)
where (a(—lz )a*('l;l_)) is the initial energy spectrum of the tsunami; 51 + X;‘ = 2ReXl
is the dou%led decrement of attenuation of the tsunami wave field; <& (}?2) is the

spectrum of the cogrelation gun_g,tion of bottom irregularities; 5(@ is the Dirac
. g - s = 1 -
delta function; o { —/3ho 1\1, ky = {kl’ k']:} = .{kli} .

k"

Fig. 3.

The great phase velocity a)/g , considerably exceeding tbe phase velocity of waves
at t:hf.‘> flui_c_i) surface ch/E' = 5h0, can be discriminated from the spectrum in a case
when kl,»«, -ky. As follows %rom (3.1), «/= a)l' Thus, the condition of resonance ex-
citation of the Rayleigh wave can be schematically represented in the following way
(Fig. 3). The wave vector kl, describing the tsunumi wave, and the wave vector of
bottom irregularities k,, lie almost on the same circle and are opposite in direc-
tion. The radius of this circle determines the resonance frequency of the Rayleigh
wave.

Expression (3.1) will be simplified in the range of large phase velocities
- 2 < -
fa, (R0)% 8 (p90,) § (a B)a(R)) & Rebt
s PR KK S (w-w,) dF, .
4. We will examine a case when bottom irregularities change only in one direction.

Such a situation is possibly encountered in the coastal zone and in regions of sub-
marine ocean mountains and the spectrum of irregularities has the form

#(F)m % (£ 'g‘;(g_g;) ’ (4.1)

where 60 is the angle between the direction of roughness and the ox-axis.

(3.2)

In order to obtain some idea about seismic waves generated in such a special case
it is also necessary to stipulate the spectrum of tsunami waves. However, here it
is difficult to stipulate any specific: spectrum. The evaluations cited by
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different authors for the time being have an extremely ambiguous character for

- one and the same case. The principal difficulty in determining the basic parameters

- is related to the complexity in the precise registry of tsunaml waves in the coast-
al zone, especially at the epicenter. We will assume that (a(kl)a*(k )) is dependent
only on the modulus of the wave vector (as a rule, such vectors can %escribe tsu=
namis arising from the initial deviation of the free surface of the ocean when the
form of this deviation is symmetric relative to the vertical axis passing through
the epicenter).

If is assumed that the isolines of bottom irregularities are situated along the oy-

axis, the examined case is easily illustrated. From the entire stress field acting

on the bottom it is possible to discriminate only one main stress component which

also for the most part determines the field of seismic waves at great distances.

It is determined by the shearing stress along the ox-axis since only in this direc-
- tion is there a change in bottom topography.

Thus, as a result of the substitution of the values (4.1) and (3.1) into (2.19)
for distances considerably exceeding the characteristic dimensions of the genera-
tion region, it is possible to obtain the spectra of the components of displace-
ments in the Rayleigh wave. For example, for the horizontal component we obtain

e (U,yq)l"% f(w> cosy,, ‘ (4.2)
where
Aw)=0745 ¢ /& 526_592 Vor 7‘@; (@) a"@))® () ¢ 271!
Similarly
5 (@) 65 f(w) sin 29, (4.3)
and :
£ g, ,=2.75 F (@) casty, . -

The radiation of Rayleigh waves has a directed character for a stipulated type of
relief (Fig. 4). The radiation maximum falls primarily in the direction of the
strongest change In bottom relief. In the full spectrum of the Rayleigh wave. there
is a predominance of a spectrum with a vertical displacement component.

The spectra of the Rayleigh wave components obtained in such a way give some idea
concerning the directivity of the seismic precursors of tsunami waves. According

to the proposed mechanism for the generation of seismic waves their excitation oc-
curs when tsunamis encounter ocean bottom irregularities on their path. Participat-
ing in the generation are only quite extended bottom irregularities, as follows
from resonance conditions. In a case when the correlation spectrum of bottom ir-
regularities is nonisotropic, the radiation of seismic waves can have a direction-
al character.
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N—

£(@) ~ costy, fW)~os J‘[/z’ya

£(&) ~2/5 cos? g,
Fig. 4.
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EVOLUTION OF AXISYMMETRIC DISTURBANCES OF VISCOUS FLUID

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 18 Apr 80) pp 90-98

[Article by B. Yu. Sergeyevskiy]

[Text] Abstract: Within the framework of the linear
theory of long waves in a homogeneous fluid a
study was made of the influence of friction on
the process of development of wave movement
caused by axisymmetric disturbances. The latter
are characterized by both displacement of the
free surface and by some velocity field. The
analysis rests on computations of the integrals.

- Vertical friction is considered to be propor-
tional to the mean integral horizontal velocity
of movement; horizontal friction is taken into
account in general form.

A large number of studies have been devoted to an investigation of waves from in-
itial disturbances. A review of the results obtained by analytical and numerical
methods in this region is contained in [1-7] and elsewhere. In this article we ex-
amine the problem of the evolution of an axisymmetric rise or velocity field in

a homogeneous fluid, with viscosity being taken into account. We used vertically
averaged equations of long waves in which horizontal friction is taken into ac-
count in general form and vertical friction is considered proportional to the mean
integral horizontal velocity of motion. The analysis rests on numerical computa-
tion of the integrals. A similar investigation for an ideal fluid was made in [8];
plane waves in a viscous fluid were examined in [9].

1. We will ex nine a layer of a viscous incompressible homogeneous fluid of the
E constant deptn H, unbounded in horizontal directions. At the time t = O the rise
) of the free surface of the fluid and the velocity field are known. Within the
framework of the linear theory of long waves, with allowance for Coriolis force,
we will investigate the developing unsteady motion of the fluid.

The mathematical formulation of the problem includes the system of three equations

Uy=CVm=gp = ra A (L 4, .

Yy bum =91, = v + AV V) o Jy=h (& 1,)
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with the initial conditions
a-u,(X.Y). ?-v.(x,r). z-zg(x.y) (t-o). (1.2)

Here x, y are the horizontal coordinates; u(x,y,t), v(x,y,t) are the mean integral
(vertically) projections of the velocity vector onto the x- and y-axes; Z (x, ¥y, t)
are the rises of the free surface of the fluid, reckoned from the undisturbed posi-
tion; £ = 2Wsin ¢ ; «is the angular velocity of rotation; ¥ is local latitude; g
is the acceleration of free falling; r and A are the friction and horizontal vis-
cosity coefficients.

Applying the Fourier transform for the variables x, y and the Laplace time trans-
form t, for the functions u, v and Z we obtain the expressions

u-éz_z. f} (cz”@ralzi/',fzz,"?a) exp[i(mxfnyﬂa"mdm,
- | (1.3)

w2 1 gt a7 aghy) ol uanar )] e

='4é3 ‘” @Jlao v, h ‘{,Jz,)c’xﬁ [_l'@x"-/zy)] dmdn,

where Go(m, n), ;O(m,n), 2 0(m, n) are the Fourier transforms of the functions
Ug> Vo ZJO; S+io0 -
o =l | 8 [a7s 200’ (2% p?)ot+ de’? [ enplet ) 4,
Y $-ioo Y
=i 1.4
5”-o((o(1-d>+52/z", 5,’Z=czﬂm-o<£’, 5}3——09[/2,6’*/72(0&&’)], (1.4)

b, =-otb-cimn, b= ah-d>+ o' b =iglmé-n (et+),

b= illlen-m(s+d)] . Eym-iHlmen (*+d)], fy= 2@ Y+ L7,

p=- [ +c?, d=r+ AR kar[mi+nd c=y[9H . 550.

The integrals (1.4) are computed using the theory of residues; the poles & are the
roots of the cubic equation

oL+ 2dol i+ (a"’-»—,oﬂd wdcfi=0, . (1.5)

which are easily found using the Cardano formula [10]. We will examine axisymmetric
waves. Then the double integrals (1.3) can be transformed into single integrals. We
wi}el ngt use ug, vg, U, V, but ug", Vg, u’, v*, where uy”, u® are the radial and
vg , VvV are the tangential components of the velocity vector. Then transforming to
polar coordinates both in the integrals (1.3) and in the transforms ugs Voo 200
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and also garrying out a transition from ug, vq, ZO and u, v, 4 to “6’ VO and 40

and u”, v, % respectively, we obtain

u = f( dzr+d i +d,l, )J;(M)dk-gu/{ﬁ,z‘).
V= X (@, & +d,i + 4 z,)J(,f,f)d/rst (£8)

Ja1

j( B+ dy T dy 7)) J, (AR ) = Z;(m)

Here \:’0’ jl are Bessel functions of the first kind;

(1.6)

1.7)

(1.8)

a= (8/7V = (g/0)"s p==d/7 + % g=-2a’~’/z7+a’(c’,f 26" [0;
a; J-u’(/f)f](n’) ar; 7, -j ~(R) R (fR)dR: 7,= ,[" (#)R (k)L

The coefficients d.. (i, j = 1,3) entering into (1.6)-(1.8) have a dlfferent form

in dependence on tﬁa sign on Q:

a) <0,
d”=,fie((o( +a’)5 [’/fzolsu dy= 9ki(¢(+d)5
J
ety 5 L) A g 1 S s,
&, == At 2(4 +d)s5; . 4 -//e,flt dyy= 4 t [(%; +a/) +& ]
-exp(ct t)/(.ie( +4dd;+8), B=d’p’ o =2 /pfI cos(q/:)-q/:,
== -2 VA wa((q*rz)/;)—a/i a=2d, ca:q--q/(l(—,o/J)"/")
b) Q>o.

4= t[a (e~ @) drz (g, -2, 43 ), dp=th|a, '7*26” “J*/‘%g)]'

4 -9/('{(a+d)A *2 [(;z -o-dl) ,tz."ra‘,(Zdth-ﬂ) ”
%= {[ @, (@2, %) Ar 2 (e W4 J("z“’d‘ﬂ'fz‘l)vs,}'
@yym-ger? [Aez (Vg +24,00)],
s GO0 Wrra{2ayep ). dp=d,, 4/,
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iy {2 Yo €7t (2 500, Ft 22 B 427
et a2 Yy - 20,(0(ay+ d)-2F=, (€7 22, |}
P R A (AT AVE S am\T(4-4)2, 1O

b= -9/25VE) %, f=a}+ 0}, p=3f~0, V=3 (@i -]y bdaps

u=f (Ga,+42)+ba 3 ) =Ja,+ 2d, A=exp (a2)/(7a]+ 4da+b)

py=ifiebda, fr8(a;— @i ) dy,, Yy=4df+28a,- pd,
Yy=cos (ta)), Y= (tq),

1=22xp (g, f)/ [ (9 + 82V)+ 6 (¢ (a}-2])+8da,+6).

- If it is assumed that the friction and horizontal viscosity coefficients are equal
to zero, then (1.6)-(1.8) will provide a solution of the similar problem for an
ideal fluid [8].

A further investigation of u*, v*, Z was made numerically using formulas (1.6)-
(1.8) for the following model laws of change in uo*, VO and ZO:

. a) ul= 8,\[T97 Fexply#?); (1.11)
b) v} = p0,+[2pe A’ex,o(-;w?z) ;
c) 7o =a, exp (g £ %),

For the figures represented below ap = 1 m, by = Po=1 m/sec (max uf = max VO*
=1 m/sec); H = 4-103 m; P = 45°; = 0.38-18-9; Y= 0.23:1079; the numerical
values of the ¢ and ¥ parameters correspond to the characteristic half-width Lp
of the initial disturbance, equal to 105 m. By the half-width of the disturbance
fg(R) is meant the maximum of the possible values R = Ly, for which fqg(L3) = 0.1
m%x fO(R). .

In [8] an analysis was given of the velocity field and the form of the free sur-
face of an ideal homogeneous rotating fluid caused by initial axisymmetric dis-
turbances. It is shown that they cause the formation of time-attenuating annular
waves and some stationary barotropic eddy at the center of the disturbance. Below
we give an analysis of the influence of horizontal and vertical friction on the
process of generation of these waves and time-attenuation of the indic. ted eddy
formation.

Now we will examine the influence of vertical friction on the process of evolution
of the initial rise of the free surface of the fluid and tangential velocities
(r 5=0, A= 0). Curve 1 in Fig. 1 gives the shape of the generated wave for the
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initial rise 4 in the form (1.11). Its profile is characterized by a rising wave
and by a dropping wave which follows it. A comparison of curves 1, 2 in Fig. 1 re-
veals that vertical friction does not lead to qualitative changes in the shape of
the wave but its amplitude value can be substantially reduced. This effect, as
might be expected, is intensified with an increase in the vertical friction coef-
ficient r. For example, if the value 2%t = max ]Z(R,t)lat the time t = 30 min with
r = 0 is equal to 0.137 m, then with r = 10"4, 2°10-4, 3'10"4, 10-3 sec~l it can
decrease to 0.123; 0.115; 0.107; 0.067 m respectively. With an increase in t the
difference in the amplitudes of the 4% waves with r = 0 and r %= 0 is intensified.
This conclusion is illustrated in the table, where column 1 gives the 7% values
with r = 0 and column 2 gives the J*+ values with r = 2:10~4 gec-l,

!
{ym ,
/4
4 4
505
7 77 / 400 R xm
- "”’”""\ 4
2
/4
V4

N Fig. 1. Profiles of 5 wave for t = 30 min: r = 0, A= 0 (curve 1); t = 3-107%
sec™l, A =0 (curve 2); r =0, A= 10° m2-sec-1 (curve 3); r = 3.10"4sec"1, 4 =
107 m2esec-1 (curve 4).

Figure 2,a illustrates the influence of vertical friction on the field of the tan-
gential component of the velocity vector v = v3. The curve marked with the symbol
00 describes the v* distribution in a stationary geostrophic eddy arising from:
the initial rise of the free surface of an ideal fluid. It can be seen that in a
viscous fluid this eddy attenuates with time. With an increase in the friction co-
efficient r the attenuation of the eddy is intensified and accordingly the life-
time of the eddy is reduced. We note that allowance for vertical friction exerts
no influence on the position of the maximum v3 value.
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Fig. 2. Distribution v .10% (msec~l) for different moments in time (figures over
the curves): a) r = 1023 secl, A=0; b) =0, A= 105 m2.sec-1,

It was demonstrated in [8] that any initial distribution of tangential velocity
(VS) in an ideal fluid in the case of long waves virtually does not change in time.

Table

t minutes ¢ M"‘[ 1 2 3 4

10 |o212] 0,208 0,201 | 0,200
20 [0,168 | 0,155 |0,162 |0,148
30 {087} 0,119 0,127 |0,115
4 |o,116| 0,088 |0,109 |0,080
so  [0,104| 0,080 {0,008 {0,078
e  |o,0e5 | 0,011 |0,085 |0,067
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The transpiring insignificant changes in hydrodynamic characteristics are attrib-
utable only to the effect of Coriolis force. Under the influence of vertical fric-
tion, with an increase in t the initial distribution of the tangential component
of the velocity vector is considerably deformed, as can be seen from a comparison
of curves 1, 2 (Fig. 3). With an increase in t the amplitude values v = vy de-
crease, but the position of the maximum value, as in the case of the initial dis-
placement of the fluid surface, to all intents and purposes persists. Numerical
computations made it possible to estimate the lifetime of such eddies. For example,
with r = 3-10~%4 sec~l a decrease in the maximum velocity value by a factor of 10
occurs during a time interval of about 2 hours.

-7
o #c mesec~1
/

4”J

495 | J
2
4

g

50 100 R KM

Fig. 3. Distribution vy (m-sec™1) for t = 0 (curve 1) and t
sec™l, A =0 (curve 2); r=0, A = 109 m2.sec~l (curve 3);
103 micsec'l (curve 4).

3. We will examine the influence of horizontal friction on the process of evolu-
tion of the initial rises of the free surface and the field of tangential velo-
cities (r = 0, A =£ 0). Horizontal friction, like vertical friction, favors a more
rapid decrease in the amplitudes of the main wave and the descending wave in com-
parison with the case of an ideal fluid. A comparison of curves 1, 3 (Fig. 1)
reveals that horizontal friction leads to some "spraying" of the wave in a radial
direction. The dependence of the amplitude of the main wave l+ (m) on time t (min)
with r = 0, A = 5.10% m2.sec~1 is given in column 3 in the table. With an increase
in A the attenuation of Zt with time will evicdently occur more rapidly.

Figure 2,b shows the process of evolution of the field of tangential velocity
caused by an initial rise of the free surface. It can be seen that with time due
to horizontal friction, as well as due to vertical friction, there is a decrease
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in the amplitude values v3 and entry into a stationary geostrophic regime of move-
ment does not occur. In contrast to the case T =£ 0, A = 0 under the influence of
horizontal friction the position max iv3(R)| with time is displaced into the re-
gion of high R values. R

Horizontal friction also exerts a substantial influence on the initial distribu-
tion of the tangential component of the velocity vector, as follows from a compar-
ison of curves 1, 3 (Fig. 3). It can be seen that the amplitude values vk = vy de-
crease and the position mgx iv2 (R) \is displaced in the direction of high R val-
ues. Computations show that with an increase in the A coefficient the field of
tangential velocity attenuates more rapidly and therefore the lifetime of the eddy

decreases. It is several hours. For example, with A = 105 m2-sec~l for t = 2 hours
max|v,\# )=0J max|n’].
R L4

4. We will examine the joint effect of vertical and horizontal friction (r == 0,

A 5= 0). An analysis indicated that the joint influence of vertical and horizontal
friction leads to a decrease in the amplitudes of the head wave and decreasing
wave and also to a "spraying' of the first in a horizontal direction. This is in-
dicated by a comparison of curves 1 and 4 (Fig. 1). Wave attenuation, as might be
expected, with A 7= 0 and r = 0 is mor: significant than when only vertical fric-
tion is considered or only horizontal friction. This 1is seen clearly also from the
table given in section 2, in which column 4 gives the numerical values 4+ (m) for
r = 2.10~% sec™l, A = 5.104 mZ.sec~l. The computations also show that in general

a change of the r coefficient exerts a considerably greater influence on the wave
characteristics than a change in the A coefficient by the same number of times.

The joint influence of horizontal and vertical friction on the process of evolution
of the initial distribution of the tangential component of the velocity vector v
is illustrated by curves 1 and 4 (Fig. 3). It can be seen that with an increase in
t under the influence of friction the amplitude values v* = vy decrease and the
position max ‘vz(R)l is displaced in the direction of large R, as occurred due to
horizontal friction. How.ver, this decrease in vp with one and the same parameters
of the problem exceeds the corresponding change occurring with allowance for hori-
zontal friction alone.
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EFFECT OF VISCOSITY AND BETA-EFFECT ON GENERATION OF LONG WAVES IN OCEAN BY
ATMOSPUHERIC WAVES

Sevastopol’ TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 19 Jun 80) pp 99-107

[Article by V. F. Ivanov]

[Text] Abstract: The author gives the derivation of
an equation for the complex amplitude of a
wave taking into account the influence of
viscosity, the A~ effect, bottom relief and
wave shearing stresses. Simple formulas are
derived for wave velocities, taking into ac-
count the surface and bottom friction layers,
as well as formulas for wave shearing stress-
es expressed through periodic fluctuations
of atmospheric pressure. It has been estab-
1ished that the influence of viscosity and the

—effect is manifested for the most part in
the resonance region and leads to a change
in the resonance amplitudes and frequencies.

It is known that atmospheric disturbances at the ocean surface [1-3] are one of
the important sources of generation of internal waves in the ocean. At the same
time, in the upper surface layer of the ocean, due to allowance for turbulent
friction, there can be intensive turbulent wave movements caused by fluctuations
of atmospheric pressure. In most studies [1, 3, 4] devoted to an investigation of
the houndary layers and generation of internal waves only the bottom boundary
layer is taken into account and also the boundary layers forming at the discon-
tinuities of a multilayer fluid. At the ocean surface it is customary to stipul-
ate the normal stresses and shearing stresses are usually not taken into account
at all [1-4] or are taken into account but are not related to fluctuations of
atmospheric pressure [5, 8, 12].

In this article we give the derivation of an equation for the complex amplitude of
a wave and formulas for wave velocities, taking into account the surface and bottom
friction layers, and investigate the joint influence of viscosity and ﬂnaﬂ—effect
on the generation of long waves in the ocean by atmospheric waves.

Within the framework of the linear theory of long waves, with allowance for ver-

tical turbulent viscosity and the effect of Coriolis force, assuming the movements
to be periodic, we will write the initial equations in the form
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7988 gssz | 499 | w0 w4 b 4ok
Fig. 1.

7 0 80 180 27¢

10 425, 8 898,5 427,8 458, 8
(1,0028) | (1,0012). (0,9007) (1,0012)

20 424,4 875,98 428, 8 © 480,8
(1,0028) (1,0012) (0, 9998) {1,0012)

30 423,1 859,98 425,4 818,7
(1,0025) {1,0012) (0,0009) (1,0012)

40 421,17 351, 0 428,4 580,8
(1,0024) {1,0012) (1,0000) (1,0012)

30 420,0 849, 4 421,8 520,0
(1,0022) (1,0012) (1,0c02) (1,0012)

50 418,8 855, 1 418,8 511, 8
{1,0020) (1,0012) {1,0004) (1,0012)

70 417,5 388, 4 418, 4 482,5
(1,0018) (1,0012) ( 1,0007) (1,0012)

80 418, 8 889, 1 4171 449,0
(1,0015) (1,0012) (1,0010) (1,0012)
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7 2%
Lﬁu*-fV"‘;',: retalir T
1
'5 Iu = ..]_- 2&— -_— 9 ‘zf‘v_ M
v [ a2t
(2)
4 du av
- — — == ” .
o7+ § (ix * >dz 3
with vertical boundary conditions. At the ocean surface with z = - & (x,7)
P=Fa - (%)
du Bu -z,
YL ==-7 ¥ - N
-P"o 2z o ? Jz (5)

at the ocean floor with z = H(x,y) (the bottom is considered fixed) for velocity
of a wave current we apply the attachment conditions

R N (6)

Here /= 24sin Y, ¥is latitude; the x-axis is directed to the east, the y-axis

is directed to the north and the .z-axis is directed downward. Since henceforth we
will be interested in wave movements in the ocean generated by atmospheric waves,

p, and p represent wave pressures in the atmosphere and ocean, Ty and Ty are wave
shearing stresses, V is the coefficient of turbulent friction of water, = 102-cm 2y
sec [7].

For a homogeneous ocean, with (4) taken into account, we have

p=Pa* Pl (7
And the system (1) and (2) is reduced to one equatlon relative to u
' ;“4 Ztﬂv——(ﬁl -#Hu -Z L,(P) > (8)
b4 Aw/

where

/] . d n 4
L - L e -/ — .
n ZP' [d',.(./)"'[] [ ax ( ) ay ]
The solution of (8) is sought in the form

wmd Gy NI ®

Al Al
where

[m Ay e " 8, eVt - L, (p)

L - o-N"E | s>,
n 29
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Taking (5) and (6) into account, for Cp we obtain

e GO N GO SN AP e D

In (10) the first terms correspond to the drift velocity of the wave current} the
second terms correspond to the gradient current and the third terms correspond to
the bottom current.

In the derivation of formulas (9) we will neglect the terms
=2 (1-1)0er
in comparison with 1, since everywhere we assume that the depth of the ocean is

greater than the thickness of the boundary layer. They are correct for 6> @ at
some distance from the critical latitudes.

We will express the drift part of the wave current through fluctuations of atmo-
spheric pressure. For this purpose we will examine a system of equations for per-
iodic movements in the near-water layer of the atmosphere, which on the assumption
of the linear theory of long waves for periodic movements has the same form as (1)
and (2). In this case we replace Yby ¥' (V' is the coefficlent of turbulent
friction of air, V' = 10 cm?-sec {7, 9]1); by p is meant atmospheric wave pres-
sure.

As the boundary conditions we take
u = uy, V=v, with z = 0; u, v are limited with z = - <0, (11)
Then the solution of (1) and (2), by analogy with [8], for the atmosphere is writ-

ten in the form ; 3
u:E J V= ¢ E -/ J '
n ¢ - ( ) A (12)

n=/

where -l - (1-()k, 2
hm 1,600+ g sk (- OW )%
(13)
Here
L 2= £, §/ 0 [ ,_(,)aip ]
n 2V’ ¢p, &y ¥
Satisfying the boundary conditions (11) and differentiating u and v for z for
iv
= \)’ 1“—) ) = - .
G=" PV 57 o Py 100 Fl&)

we obtain the expressions

i .
z;:L T, . r’-‘g(-/)nr“' (15)

Rl
where (/-4’) . Gy n 2Pq .
L vEa —— -/ _— .
a 4&,’,[‘&( A ay )
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In (15) we will neglect terms with ug and'vo since theey are small in comparison
with the others, but we will assume that p = p, with z = 0. These expressions
are an analogue of the formulas for the components of wind shearing stress [7].

In (10) we will replace fx by 1:}, using formulas (15). Tien we have

7 s -0yl -
£ oy /-‘;— L (Pa)e Vot — L (P)* Lo )y (-6)en (#-2) (16)

n

Substituting u and v from (9) into (3), with (7) and (16) taken into account, for
the complex amplitude of a wave on the- /8-p1ane we obtain

i (g2t A, . 0
IIA;_’-’-[(/)’,;,)-f- ‘?"JQ]’, ;,) + -&-—‘9——2; +qu/‘/zf-‘-—-zg -

Yy dx
— (17
- T = v 1a7n
- v
- (/+b)¢raz,-— (/ﬂ);- T 9, 4Pa
where . el . 2 —
v VI

ax dx ay P

PR LA T AP AP 1 Cis 0§
N Tk gy gy ax T gtet T T o(51-29)

/ :
z,-z*-ﬁpa, 1(#2) =

Vv T /2 -7
‘-———77‘[ (- 274 + (-7 ]' =20a L A,
g, I +0)"+ 0-0)" | p Los ¢, a= G4l n
In the derivation of equation (17) we will neglect the secondary effects of the
variability of /£ and H, related to viscosity, since we are considering a deep
ocean (#2 5+ T1), Their contribution does not exceed several percent in compar-
ison with the ;Eundamental terms II and IV, which were retained. For a deep ocean
and small periods (about several hours) it is also possible to neglect viscosity
(term V), leaving term I.

Now we will integrate the continuity equation
d—“ + _ai + —a!_ -
ax ay dz

for z from O to z, and using the buundary condition w = i6z at the surface, we

(18)

obtain
hm (T + t Wy o
as/ " 19
where , ( 3 .5,_.
¢ I+l - (7=6)0ln 2
W, = — — ap (/-e¢ o
_ * ZP,[5+(-/)“!]{‘ 2, Vv ° ( )+

Az . dp A _dg_
+28p~ —LE [ L (=
I {‘dx *C 3y ] *

+[1@p)=i€1)"Ip) - %;f)m] o U)% (//-z;} .
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Specific computations were made for an ocean of a constant depth. Assume that a
plane wave of atmospheric pressure moves over the ocean

- (AP~ 0L
g o= pe’! ’, . (20)

where r = x cos & + y sin 9; & is the angle between the direction of wave propa-
gation and the x-axis; ) is the amplitude of a wave of atmospheric pressure. In
an ocean of constant depth it generates a wave in the form

S (21)
and with the amplitude Z ,. From (17), with = pnelkr and 7 = ikr taken into
0 Pa 0 0

account with H = HO = const, we find an expression relating the complex amplitude
of a wave in the ocean to the amplitude of a wave in the atmosphere

PN

_ Z.-Pg [/-JZ+ (/*i)ng,.//,-/"‘ J(eyal.’&"".gxt’i/la)k,.l
where A . £ \/;-T_‘F!"
=% =N

Here ko is the wave number (space freqt_xency)v corresponding to free oscillations
in the absence of viscosity and the S-effect. Using {22) we determine the wave am-
plitude (absolute ZO value) and 1its phase

7
f=~\JR:+ 12, y= arctqy g (23)

where R and I are the real and imaginary parts of formula (22). If it is assum~

(22)

ed that V' = 0, in the absence of the ﬁ—e_ffect resonance occurs when
7 ,9-'0" “(/-q")z"'qz. y=arctg J=9r
RV ? 97 26)
, r

We will assume that H = 1000 m, ¥ = 30°, py = 100 Pa. It follows from (24) that

resonance sets in with J>1, that is, with a space frequency higher than ko and

a phase close to 90°. Since qp<< 1, the shift is small. With Y = 1 the amplitude

already decreases by a factor of /2 and the rhase is equal to 45°. Here and in the
_ text which follows A and Ap are indicated in centimeters.

The figure shows the dependence of the dimensionless amplitudes (pg = (P Og)'PO)
on the dimensionless space frequency ) . The dashed curves 1',2', corresponding

to periods of 2 and 3 hours, were computed in the presence of viscosity; the solid
curves 1-4, relating to 3 hours, for & equal to 0, 90, 180 and 270°, were obtain-
ed taking into account both viscosity and the SB-effect. It can be seen that allow-
ance for vertical turbulent viscosity leads to a shift in the resonance curves to
the right (to the left if the dependence of dimensionless wave amplitude on the
dimensionless time frequency § = 0/0( [2] is examined). This shift increases with
an increase in the period, but the wave amplitude decreases. As a result of the
joint effect of viscosity and the B-effect, even for identical periods,in depend-
ence on the & angle, there is a change in wave amplitude and a shift of the reson-
ance curves.,
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For example, if the wave propagaﬁed to the east (49= 0) the resonance curve 1 is
shifted to the right relative to the dashed curve 2', computed in the absence of
the pP-effect. For a wave propagating to the west (9= 180°) the shift of curve 3
occurs to the left. Their resonance amplitudes are virtually identical. If the
wave is propagated to the south or north there is no shift of the resonance
curves but the resonance amplitude with &= 90° (curve 2) is less, whereas with
= 270° (curve 4) it is greater than when only viscosity is taken into account.
With an increase in the wave period these differences become greater. This also
corresponds to an increase in the circles, one of which, with T = 3 hours, repre-
sented by the dashed line, is shown in this figure. Each point taken on it cot-
responds to the resonance amplitude value computed with a smooth change in the
& angle from 0 to 360°. An analysis of the results of computations shows that the
influence of viscosity, and also the joint influence of viscosity and the ;3 ~ef-
fect on wave amplitude,is manifested for the most part in the region close tec
resonance (0.98<¥<1.02). Beyond it these effects are not significant (all the
curves for different periods and f angles virtually merge). With respect to wave
phase, with J<Y _ it is negative, whereas with Y>¥. it is positive, that is, a
wave generated in the ocean with an increase in g first lags in phase behind the
atmospheric wave and then for § > ¥p begins to "outpace" it, changing very rapid-
ly at 180° with ¥ Xp. We note that all the curves in the figure were computed in
the presence of wave shearing stresses in (22). However, allowance for them does
not lead to a substantial increase in wave amplitude for the considered periods,
but is more important in computing the velocity of the wave current.

Now we will clarify how a change in the Coriolis parameter exeérts an influence on
wave amplitude. It was demonstrated in [1] that for free oscillations, correspond-
ing to small periods of about 1-8 hours, a change in the Coriolis parameter exerts
1ittle influence on the wave amplitude. For forced oscillations such will be the
case only far from resonance, whereas near it the role of the Coriolis parameter
increases.

The table gives the values of the resonance amplitudes Ay (T = 2 hours, 85 0) as
a function of latitude ¥ for four values of the ﬁangle', equal to 0, 90, 180 and
270°, The figures in parentheses correspond to Xp values corresponding to these
resonance amplitudes. [t can be seen that if the wave is propagated to the west or
east, its amplitude varies little with latitude. However, the greater the lati-
tude, the greater will be the ¥ value at which resonance is attained for &= 180°
and the lesser will be the ¥ value for O= 0°. If the wave is propagated to the
south or north, resonance is attained with virtually identical ¥ values, but with
an increase in latitude the wave amplitude for & = 90° first decreases and in the
region of the middle latitudes attains a minimum value, and then increases. On the
ccher hand, for an angle &= 270° the rescunance amplitude of the wave attains a
maximum value near the middle latitudes.

Summary

An equation was derived for the complex amplitude of a wave taking into account
the influence of viscosity, the f -effect and variable ocean depth. Simple for-
mulas were-also derived for the velocity components of a wave current, taking the
surface and bottom friction layers into account,and for wave shearing stresses
caused hy periodic fluctuations of atmospheric pressure.
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It is shown that the influence of viscosity, the B-effect and change in the Cor-
iolis parameter on wave amplitude for small periods (of the order of several
hours) is manifested for the most part in the resonance region and leads to both
a change in the resouance amplitude of the wave and to a shift in the resonance
frequency.

10.

11.

12.
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GENERATION OF LONG WAVES IN OCEAN OVER LOCAL BOTTOM RISE BY ATMOSPHERIC WAVES

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 19 Jun 80) pp 108-117

[Article by V. F. Ivanov]

[Text] , Abstract: With allowance for surface and bot-
tom friction layers a study was made of the
generation of long waves in the ocean propa-
gating over a bottom rise through the action
of atmospheric waves. It was established that
in the surface layer the drift wave velocity
component makes a substantial contribution to
total wave velocity, especially for shorter
wave lengths. It is noted that the influence
of viscosity, the B-effect and bottom relief
on the elements of the generated waves is re-
flected more significantly in the region close
to resonance and in the neighborhood of the
peak of the underwater rise.

Recently interest has increased in study of the variability of oceanological fields
caused by periodic oscillations in the atmosphere having characteristic periods
from several days to months [1l]. Nevertheless, it is of interest to investigate
wave movements in the ocean in the range from several hours to a day, emphasizing
the upper surface layer in which intensive wave movements can exist. In many stud-
ies [2, 3] in which a study has been made of the influence of viscosity on the gen-
eration of surface and internal waves by atmospheric disturbances in most cases the
investigation was confined to the bottom boundary layer and the depth of the ocean
was assumed to be constant. An investigation of wave movements at the bottom with
allowance for viscosity in a basin of variable depth was made in [51.

In this article, by numerical methods, with allowance for the surface and bottom
friction layers, a study is made of the generation of long waves by periodic atmo-

spheric pressures in a homogeneous ocean of variable depth.

Assume that a plane wave of atmospheric pressure
A 4’("7’ -0t) Q)
p ",b e 4
a /o
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moves over the ocean. Here r = x cos O+ y sin 6; Bis the angle between the direc-

tion of wave propagation and the x-axis. In a region of the ocean of a constant
depth it generates a wave in the form :
4 ((kr-OF )
fag e
(4
which propagates over a local bottom rise having a domelike configuration [5]. The
bottom relief of the underwater rise changes in conformity to the formula

- 2)

Koty -H, s’ cos“ G5 wnen iel, m<l, )
7

Hef ~ when =4, M>4,

where 1[.)1 and »32 are the horizontal dimensions of the region at the base of the
underwater rise; Hy is maximum ocean depth; H, is the elevation of the bottom rise.
We will investigate deformation of waves in tgie ocean generated by atmospheric
waves over the underwater rise and we will study the structure of wave velocities.

The equation for the complex amplitude of a wave with allowance for viscosity, the
ﬂ—effect, bottom relief, wave shearing and normal stresses at the surface, ex-—
pressed through atmospheric pressure gradients, is written in the form

2
Y A P 2 .. SR A R P
aJc Z Z[i-v-(-/)”fj // A;, Zd” A;y [5*(_,)71{-] n (;1)

2
» (1+i) y’
@ 'Z"(//)} "2 T AeENy

where £= 24kiny; ¢ is latituce; 4 ¢ =4 + Pa/8 Pci

G CIVL . N R A
| ETE, i (1

and L:: is a complexly conjugate operator; V' and V are the coefficients of turbu-
lent viscosity of air and sea water. In accordance with [4] we will assume that
they are equal to V' = 104 cm2/sec, V= 102 cm2/sec. In [6], within the framework
of the linear theory of long waves, for 05Z the equation (4) was derived in which
we will neglect the secondary effects of the variability of / and H, associated
with viscosity, since their role is small for the deep ocean when the depth H>h,
where h is the thickness of the boundary layer (h = 5no(1'1).

Knowing & and py it is possible to compute the velocity components of the wave cur-
rent using the formulas

2 ' (5)
U= €, r-ii(-/)ac;,,
n=! =4

where
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| TRV I S VAR
& =_\/;1—Zn (/%)e (0% 2. Za(P)*ZnCD)z-i/e l z’

mo_ 7
b= g el e

(6)

In formulas (5), (6) the first terms correspond to the drift velocity of the wave
current (we will denote the components of drift velocity by udr and v4ry), the sec-
ond terms correspond to the gradient velocity and the third to bottom velocity.
The solution of system (4) is taken in the form

¢ - E +E R (7

where § is a disturbance introduced by bottom relief;

-~ |

¢=g 6 (8)

the solution with H = Hy = const. The complex amplitude of the wave ¢ o with al-
lowance for

Az=/%e}*f . 9)
is found from (4), assuming the ocean depth to be constant,
- (4-8)
C, ’ff"g,(t*yﬁ) ! (10)
where
2
: (70-2),42 N -
e ekt [
/IZ Mn[’*(") {] \/’;-
£ (7+6) 4 T o
-i V] k{ - ]4. ﬁ 0 g_ A ﬂ}'
D ‘1{ 2, " GeenEl” 1Yo

Since beyond the local bottom rise the ocean depth is considered constant, the dis-

turbances introduced by bottom relief attenuate far from the underwater rise. Ac-

cordingly, the horizontal dimensions L] and L2 (Li> fl, L2>f2) of the investigated
- region must be such that at its outer boundaries it can be assumed [5] that

_ =0 (11)

At the internal points of the considered region we determine amplitude from equa-
tion (4). Substituting (7) into it, with (8) and (9) taken into account, we obtain
an inhomogeneous equation relative to§

7 . H E
- ~_(1¢¢) = ol VA
%+ 2 TG D) {m z w7,

) z;(f/)}.;-{[;(ww e 2(6-0P) o
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) where 2 . P s
-3 Arsermprlos-(1)ans]| - £
.
g i \
7/
2
t4 \

The derivatives in (12) are replaced by central finite-difference ratios and the
derived system of algebraic equations is solved by the Seidel iteration method.

Specific computations of wave elements were made for parameters of the problem
which then were not changed (the linear dimensions were given in kilometers): !
=22 = 48; Ly = Lp = 30; Hp = 15 Hy = 0.94; ¥= 30°, the amplitude of the atmo-
spheric pressure was assumed equal to py = 100 Pa, the interval of the computation

grid was h, = 4 km.

Emphasis was on an investigation of the influence of bottom relief on wave ampli-
tude and wave velocities and study of their spatial structure.

103

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

FOR OFFICIAL USE ONLY

Figure la,b,c shows the dependence of the maximum amplitudes of the wave A and sur-
face wave velocities U and V on A for T = 2 and B= 0, computed for variable (curves
1 and 1') and constant (curves 2 and 2') bottom relief (here and in the text which
follows U and V are indicated in centimeters per second, A in centimeters, Ain
wilometers, ¥ and Y ' in square centimeters per second, T is in hours. Curves 1 and
2 were obtained taking into account all the terms in (4) and (5) and 1' and 2' for
Y' = 0. In Fig. 1,a the curves 1' and 2' have been omitted because they are close
to 1 and 2. This small difference is attributable to the fact that allowance for
tangential friction at the surface (V"' =F 0) has little effect on wave amplitude
(by only several percent), but exerts a more significant influence on wave move~
ments in the surface layer (Fig. 1,b,c). In this case the greatest differences in
the amplitudes of Up, Vp from Ugys Ver, computed for the cases P! = 104 and Y' = 0
respectively, are observed on the slopes and at the base of the resonance curves.
1t should be noted that for A>A (X 1is the resonance wave length) the amplitudes
of velocities Up> Ugr, Vn> Vgrs whereas for 625<A<Ap, on the other hand, Up<Ugy,
Vn<Vgr. The influence of bottom relief on wave amplitude is more significant near
resonance and on the amplitudes U and V in the entire resonance region (3K A<12).

Now we will examine a case when A= A _. An analysis of the results of computations
shows that during resonance the influegce of tangential friction with z = 0 ex~
erts little effect both on the wave.amplitude and on the amplitude of velocities.
For example, for the period T = 1 with Y' = 104 the amplitudes Ay, Up and V, are
approximately 1.77% greater than the corresponding amplitudes with y' = 0, whereas
for T = 2 — by 2.5%. At the same time, the influence of bottom relief on wave ele-
ments is manifested more strongly and increases with approach to resonance. For the
amplitudes of velocities this {ncrease is considerably greater than for the wave
amplitude. For example, for T = 1 with y' = 104 Ap is 15.27% greater for variable
bottom relief than for constant bottom relief, Up is greater by a factor of 2.3
and Vp by a factor of 14,2. For T = 2 this increase is: Ap by 4.1%, U and Vp by
factors of 1.7 and 5.5 respectively, that is, with an increase in the period’ the
role of bottom relief decreases.

Returning to Fig. 1,b,c we see that with a decrease in wave length its amplitude far
from resonance decreases, whereas the velocities Un and Vp increase. This increase
is attributable to an increase in the role of the components of drift wave velocit-
ies Ugqy and V.

Table 1 gives the values Ugy and V4, (upper and lower lines respectively), computed
with the use of formulas (5), (6) for six periods and different wave lengths. It
follows from this table that with an increase in the period of oscillations and a
decrease in wavelength Ugr and Vg, increase by several times and allowance for them
is important in the surface layer, especially for shorter wave lengths.

Figure 2 shows the fields of amplitudes of surface velocities U and V, computed us-
ing formulas (5) for T = 2 and two wave lengths A = 825 and A= 800. The solid
curves correspond to the total velocities Up and Vp, whereas the dashed curves cor-
respond to the gradient velocities Ugy and Vop» computed without allowance for the
terms Udr and Vd . An analysis of the U, and Ugr fields shows that at the center of
the underwater rise there is one large disturbance on both sides of which there are
two additional lobes. Qualitatively the Up and Ugr fields for A= 800 agree well
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with one another although there is a small quantitative difference. The maximum
amplitudes Uy = 0.91, Ugr = 1.00. For A = 625 the U and Ugr fields have only an
external similarity. A more detailed analysis indicates that the U, field at the
center has a minimum (Up = 0.3) and Ugy has a maximum (Ugr = 0.82). Within the
additional lobes U, is greater and Ugy is less than outside them.

Table 1

N 200 | 400 80C 800 | 100

2 8,56 1,78 1,19 0,89 0,7

0,30 0,15 0,10 0,07 0,08

4 7,27 3,88 2,42 1,82 1,45

1,21 9,81 0,40 0,30 | .0,24

8 1:,30 5,85 3,77 2,88 2,268

2,83 1,41 0,84 0,71 0,567

8 16,80 7,85 5,30 8,97 8,18

5,30 2,85 1,77 1,32 1,08

i0 21,37 10,88 7,12 5,3 4,27

8,90 4,45 2,07 2,28 1,78

12 28,26 14,13 9,42 7,08 5,85

14,18 7,08 4,71 8,58 2,83

- T Table 2

7 P A g 750 705 726 | 714,76
o | 88 !1033 ' 383 38,0 482
p 9,88 | '0,08 ! 42,1 | 82,9 268
' 180 i 4,04 | 10,33 | 38,4 38,0 432
. 9,45 | 0,85 | 35,2 8,7 295
, Loi,82 0 2,38 7,96 7,87 01,7
J A [ ve 221 @ 878 7.21 85,7 .
180 N ) 2,32 8,i8 7,88 81,7
| 188 | 238 | 7,8 | 845 | 6598
10,407 | ;476 | .60 1,62 | 160
y 0,416 | D462 . 1,33 1,48 | 13,7
180 0,408 | 0,474 1,71 1,59 1 18,1
- 0.400 | 0,488 | 1,38 1,75 | 18,8

The V, and Vg, fields behave otherwise. Both qualitatively and quantitatively they
differ great%y from one another. For example, the V, field for A= 625 to the left
of the direction of movement of the wave (y > 0) is more intense and has two maxima.

105
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

FOR OFFICIAL USE ONLY

e e e - mmad

106

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

FOR OFFICIAL USE ONLY

To the right of the x-axis (y<0) it is weaker and consists of two lobes, each of
which has its own maximum. The isolines of the Vgr field, on the other hand, are
clustered to a greater degree to the right of the x-axis, but at the left there are
two lobes with a maximum and a separate lobe along the y-axis (y>0) with a minimum.
For A= 800 the V, and Vg fields agree better qualitatively than for A= 625. They
have a great quantitative difference. For example, the Vy field is more intense
than Vor (Fig. 2).

The presence of a ,B—effect is reflected for the most part in the resonance region
675< A<750 (1.059> )7 0.953, where X = 2 Hs A = 714.76). It can be seen (Table
2) that for A= 675 and A>750 the influence of the ,B-effect and bottom relief on
the amplitudes of waves and velocities is small and does not exceed 2-37% (the upper
lines correspond to the values of the maximum amplitudes A, U, V, computed without
taking the ,B—effect into account and the lower lines —- with the /B-effect taken
into account). With approach to resonance their role increases. For example, for

A = 705 and A= 725 the maximum amplitudes A, U and V change by 8-10% in compar-
ison with a case when the lg-effect is absent.

~o

S

]
<

g:-

Fig. 3b.

If ;B= 0, the amplitudes of the waves virtually do not change for waves propagat-
ing in forward (& = 0°) and backward (&= 180°) directions, but the amplitudes
of velocities change by only 2-3% for A= 705 and A= 725. For these same wave
lengths, but with allowance for the B -effect, this difference is more signif-
icant and for both the wave amplitude and for velocities is approximately 15-177%.
In addition, if ,9 = 0 and A<}_, the amplitudes A, U and Vg are less for &= 0°
and greater for B = 180° than Ii)n the presence of a ,B-effect. In the case )>)p
the opposite picture is observed. ‘

With resonance (A= A,) the role of the ;B-effect is manifested in a decrease in
the maximum amplitudes of the wave elements. For example, the amplitude of the
wave is 32% less and the amplitudes of velocities are approximately 287 less than
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in the absence of the ﬁg-effect. 1t must be noted that in a resonance case even
with,ﬁ =+ 0 the maximum amplitudes of velocities and waves virtually do not change
for #= 0 and @= 180°. The joint influence of the S -effect and bottom relief in-
creases not only with approach to resonance, but also with approach to the peak

- of the underwater rise. Nevertheless, qualitatively the fields of amplitudes Af,
U2 and Vg do not experience significant changes. In this case the V field is more
intense to the right of the direction of movement of the wave both during its prop-
agation in a straight line and in the opposite direction. In a study of the role of
the B-effect we assumed V' = 0 in order to evaluate better its influence on the
amplitudes of gradient wave velocities.

Figure 3 shows profiles of the velocities u and v, computed for the period T = 2
hours at the time t = O (solid curves) and after a quarter-period t = 0.25T (dashed
curves) for a point situated at the center of the bottom rise (x = 0, y = 0). Curves
1 and 2 correspond to A= 200, curves 1' and 2' correspond to A= 400. The analysis
indicates that as time passes the profiles of the velocities u and v experience con-
siderable changes both in value and direction. For example, the velocity u for A=
200 has a clearly expressed maximum at a depth of 6.5 m at the time t = 0.25T, and
for N = 400 —- with t = 0. The v profiles behave similarly, but in contrast to u
the v velocities have a rather distinct maximum for A= 200 and t = O (curve 1), and
also for ) = 400 and t = 0.25T (curve 2.

Summary

Allowance for surface shearing stresses has little effect on wave amplitude for
short periods (of about several hours) in comparison with the normal stresses, but
is more important in computing the velocity of the wave current, especially in the
surface layer for shorter wave lengths.

The influence of bottom relief, and also the joint influence of the /g—effect and
bottom relief is manifested to the greatest degree near resonance and near the peak
of the underwater rise.
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INFLUENCE OF FLUID VISCOSITY ON WAVE RESISTANCE TO SYSTEM OF NORMAL STRESSES
DISTRIBUTED IN SEGMENT

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH
T VNUTRENNIKH VOLN in Russian 1980 (manuscript received 19 Jun 80) pp 118-123

[Article by L. G. Yeremenko]

[Text] Abstract: In this article the wave resistance
of a viscous fluid is represented by the L. N.
Sretenskiy integral. An asymptotic solution is
obtained in the case of an arbitrary viscosity.
Known solutions are obtained in the case of van-
ishing viscosity. Numerical computations indi-
cate the presence of such regions of parameters
in which even a small viscosity gives results
differing substantially from the results for
an ideal fluid in these same regions of the val-
ues of the parameters.

In a linear formulation we solve the problem of computing the wave resistance R
of a viscous fluid covered by a viscous film with the steady movement of normal

pressures px, uniformly distributed in a segment [1, 2], over the surface of the

fluid av
A PR+VAT, divi=0

ax—p
p=10(0) & ax;

with z = 0
) ;
Pl G+ g Frrmeg (1),
Pap+pygz, pgh+ F] =0,

i By
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. Vs Vyo p~>0 when z > - 00 (6)
v, 4v; _
.;xﬁ”;n’ 2P0 i'x""# g vhen | x|-e0, (7)
7, Ixl=f
X )=
. £ () 0, kl|=¢ . (8)

Here O is fluid density; ,/is the kinematic viscosity coefficient; u is the velo-
city of movement of normal pressures; Pf is the density of the surface film; vy
and v, are the velocity components of the fluid; & is reduced surface tension
[5]; Z is the rise of the free surface;/o is fluid pressure; P is the dynamic com—-
ponent of fluid pressure.

The origin of coordinates is set on the undisturbed fluid surface. The oz~axis is
directed vertically upward.

The system (1)-(8) is solved by use of an integral Fourier transform of x. Invert-
ing, we obtain the following integral expression for rise of the free surface:

Jam °§° Rl AVACHLS _ ,
Vizp 3 (2967 - i6 u) % (glekpleP)-40 37216l V95T - g u 9)

Bz [a(x)e “ax.

After some transformations the integral expression of wave resistance is represent-
ed in the form

pm-22°f _isintcl¥ld N
To-5([29¢ ’-i¢a]’+(9l¢lzel4l’}47'$7!£|3 T

- ﬁ=°‘/f7 .
Investigating the expression for |q |at the extremum,
| g iIar VTG |
8= \2veT=ic iy T+gleTopleT | *

it can be demonstrated that for all £ (-co< £ < +®) the following evaluation is

correct
|9l =¢ Tier I ‘57‘125‘

E By virtue of this evaluation the wave resistance (10) can be written in the form
of a converging series [3, 4]

(10)

ud < ieint& €| -9 dg | (11)
: SR W e oA L M
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We will make a replacement of variables &= gv/u2 and then write the main term of

the expansion .
__g_gf]" isin® v/Fridy
xpgy v G PLPI (G P-T) vI=V+T]

(12)

~N
A
~

V4P TVI+ (4 P+ Y=V +/ ’

+
3

j-" (8int v/Fr2 dy
0

where ¢=_3_I§l_ f,.=#,‘ /'=g-2{---‘§-g-"

WE is the Weber number, Fr is the Froude number.

We will break down the integrands (12) into simple factors
24 . I dr 1 casvifre
R== T——g—;—?7 [-—f_—-¢-— ..____.f_dy.‘.
& A .
.P!{;/Z,(,‘ Zs h"/! '

i"__v_‘_{_"‘twh‘rzd _t___f___ tr
R e T IR

:aé‘y/fc.l""*’éf'% dv-i,-i cas Zzﬁﬂf dv]} ' 13)

v /' j ? V-'V/'

~
Here vy and vy are the roots of the equations respectively:
4Ry (4 P=r)riay+/=d, 4P? Ve(4ip+) V2V s1=0.
Using expressions 3.722.7, 8.232.2 from [6], we finally obtain

[ .

27 /
(S v e o

?f',—; cers(Foz v)ell7e Nrenleer il v)+ 0P
Y 2 _ 1
‘.’]‘},'Ji,—""&'*'"&"(/zw ZFY L X AN v,-("'""f—r'z' 7
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e cwr(Ar ) ;,(7;,_ )esi(hr )l )+

The residual of the series can be represented in the following way:

(14)

0 fF isindvs 27 4y,
R./l'.-.r?yiﬁ*ﬂ WIT=4iPvisfri-jvi+ )y 7-9 av

We will evaluate RN with respect to absolute value, assuming N = 2k. Then IRNI

+ 2|J|, where S
- ot VETT. v Ay .
|J,I=vamoz VLTV vel )L+l PIv (PTViial Y’ -V®7v?)

It can be shown [5] that

| W ety
VG2? e vy s 1+ 16 7 (Pt T 2-YPTRY ¢t VT

Then for ‘*71| ‘we obtain y .0 q”
.‘74<27?'! Fv (AT e
We will break down the integration interval into two parts [0, A] and [A,00)
- .
r f _gmdy 1 T g dv
12 ‘277[ ve‘(h/’?'fﬁl ve';[( 1+ v?)
and in the segment [A, 00 ) we evaluate |q]<g as unity. Then
V4 a0 ) IJI/Z-& /
! . 11T dv_ol 4 A )
o) <5z |22 v Sitr i) FE TR N T

/4
We will select A from the consideration that both terms on the right-hand side of

the latter inequality are of the same order of magnitude

@2 lJ,CK-,#)ﬂg/:?/? , ,J(A-wz,ﬁ'_fn,lsr_iu——-’-ﬂ-—q‘_‘ L

Thus, we obtain the following evaluation of the residue of the series:

Srpp—
ol <o o8 PR

Numerical analysis of problem. In the case of steady movement of the normal stress-
es distributed in a segment we made computations of the total resistance using for-
muia (14) for the cases = 0 and B == 0, and also using the L. N. Sretenskiy for-
mulas [7] for the wave resistance of an ideal fluid and for the wave resistance
of an ideal fluid with a correction for viscosity
4t ., /1 4¢* 29 /
R = F.-?_ sin? =1 2 Rk 7 = e O TE
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The computations were made for different Fr and WE numbers. It follows from the
computations that the influence of viscosity in essence is expressed only for
velocities of movement greater than 20 m/sec. The presence of a region of a
sharp rise and fall of the wave resistance of a viscous fluid is of interest,
whereas for an ideal fluid a tendency of wave resistance to a limiting constant
value is characteristic. The influence of a surface film is important only in
the rise region.

625.A

Fig. 1. Wave resistance: of moving pressure

, ¢
P;'{o, m:[ ;

for a viscous fluid; _._ for a viscous fluid with allowance for surface tension;
_ for an ideal fluid.

For velocity values less than 20 m/sec the computed values of wave resistance for
all four expressions coincide with a great accuracy.

L. N. Sretenskiy [l] derived his formulas by the method of expanding the integrand
of wave resistance into a series in powers of viscosity near vanishing viscosity.
The correction for viscosity obtained by this method was insignificant. In this
study we have investigated this same L. N. Sretenskiy integral, but have obtained
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a different asymptotic expansion of this integral for arbitrary viscosity, from
which the L. N. Sretenskiy solution is obtained as a special case.

The curves presented in this study show that it is possible to indicate the zones
of values of the parameters for which the influence of viscosity is important.

A clarification of the influence of different factors on wave resistance is neces-
sary in developing means for lessening it.
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LONG SURFACE AND INTERNAL WAVES GENFRATED BY NONAXISYMMETRIC INITIAL DISTURBANCES

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 18 Mar 80) pp 124-135

[Article by S. F. Dotsenko and B. Yu. Sergeyevskiy]

[Text] Abstract: In a linear formulation the authors
examine the process of development of spatial
long waves in a two-layer fluid caused by ini-
tial displacements of the free surface and inter-
faces of the layers. A study was made of the influ-
ence of asymmetry of the initial disturbance on the
developing unsteady surface and internal waves. The
rises are modeled by a set of a finite number of
identical (but displaced relative to one another)
axisymmetric displacements of a special type, for
which the solution of the problem is expressed
through elementary functions. It 1s shown that for
extended initial disturbances waves radiated perpen-—
dicularly to the greatest axis of the rise are dom-
inant. A comparison with both plane and axisym-
metric waves is presented. Regions for which the
spatial waves are close to plane waves are deter-
mined.

The process of evolution of nonaxisymmetric initial displacements of the free sur-
face and the interfaces of layers of a two-layer fluid is examined. The influence
of the asymmetry of the initial disturbance on the developing surface waves was in-
vestigated earlier in [1, 5, 6].

1. A basin of the constant depth H, filled with an ideal incompresuible two-layer
fluid, unbounded in horizontal directions, is examined. The thickness and density
of the upper layer are h; and [31 respectively; for the lower layer, hy and O 7,
the corresponding parameters are />l<f32, H = h; + hp. At the time t = O the free
surface and interface are displaced from the horizontal positions and the velocity
field is absent. Within the framework of the linear theory of long waves we will
investigate the influence of asymmetry of the mentioned initial disturbances on
the process of formation and propagation of surface and internal waves.
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We will examine the auxiliary axisymmetric problem. The mathematical formulation
of the latter in a cylindrical coordinate system includes the two equations [2]

. 'z ’ o i
1m o Ga(Uir eh) "G a(g37¢4) D

with the initial conditions

z’,, ;OI (,f), ;/- g, zzn zonQ)’ ZZ: 0 (taO) .
e - &
where R = \/)—c + yz—; x, y are horizontal coordinates; ZOi are arbitrary functions
allowing the use of the Fourier transform; Zl and o are the deviations of the
free surface and interface of the layers from undisturbed positions:

1 0 (3 ~ = .
- —— —_— .= S £ s Em/=4 =/ 2.
=% ar@m)’ CRRVALCEN 2 R A

The solution of problem (1.1), (1.2) in integral form is found using a standard
scheme using the Laplace transform of t and the Hankel transform for R. The final
expressions for Zi(R,t) have the form

(1.2)

3 e e .
2 (RE) =1, =Y 1, (82), L= { Ta(n2)ECYR)2r (1.3)

0

where Jg is a Bessel functio:of the first kind;

oo p - .

FK‘ S Rlax (k)]o Qlk)d'e; a”’ '2-’. (a, ]‘, "'az ﬂz) ’
” -

- -2 . - -/ .

42-2&5;6”(4“’2#7*62“2 FZ) ’ 02, JC J’z -

. -2 ‘ .
gymtrl(g- 148 > e g )

- /{-(Hm); = ‘/97 N PPy g}-/téz-Zec;)A";

6, 1£cn”; dy=t =(czz- t‘,z)A": K mcos (r-a‘. ¢) .

s

with £<<1 the D;: coefficients are written in a simpler form, more convenient
for analysis, retaﬁling only the most important terms

2,-2 2,-2
5 - (/- ehlH ) reosretvehl N P reosra

= e/zZ//"r (cos rct-cosrazf), p”..e"p” , (1.4)

3= (= h)# reosrct - 24, Hrcosrat, uo, foh €.

We will examine model initial displacements of the free surface and interface of
layers in the form
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J -3/ A
1, (0 =8 & @~ Y (B gmconsts §>0) - s

Then the integrals %4} in (1.3) are computed using formulas 6.554(4), 6.623(2)
from [3]. Finally we find

S 2 - T 2
_ 2 -2

- f 4 { a/ 5// ’ % '4IJ ) 4 4 5’/ & .
F7 !
A =L we

2 2 o
o= AR5 6 ) 85,40 1=44 ). @ 154475,
where Jo! / / /= /7Y

59;-_;_1 [ 2¢; 2 ca.s(zi q; /> . Wy .m(jz q‘./.) ] 7;)?/4 :

» apm? 2, a2 2 2
.7:/ /‘1‘/4- A{/ R A/‘./.-A’rq. —u/,z;_‘ : 4{,/,.2["“/.5-;

the angles 9Jije[0, 771 also satisfy the system of equations

- - w1 "
Stnq‘./.-'l‘-/ Ty o+ €084y ="y ly -

An analysis of the process of formation and propagation of long waves for this
case is contained in [4].

The solution of the axisymmetric problem makes it possible to study some features
of development of spatial waves in more complex cases when the initial displace-
ments of the free surface and interface of fluid layers do not have cylindrical
symmetry. We will use, as in [1], where the case of a homogeneous fluid was ex-
amined, the very simple method for modeling of such wave processes. It rests on
the algebraic addition of a finite number of identical initial axisymmetric dis-
placements of the form (1.5), whose centers are situated at different points (xij,
yij) in the horizontal plane (1 = 1 is the undisturbed free surface of the fluid
z =0; i =2 is the interface of the layers z = -hy).

Assume that Y
: b= A z 1 Zoc (By)
Pty (1.7)

v - e
£y= \/{‘“x'/)z’ (PN ”u'/””fj"{;; 20y}
. ¢

where n. are natural numbers; i = 1, 2. Then, due to the linearity of the problem
from formulas (1.3), (1.5)-(1.7), we obtain

. 2

i (x,y, t)- Ay By 2 Z Lix (R‘./.. t) ; (1.8)
) Jon; Kot
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With t = O the maximum values of displacements of the surface and interface of the
fluid layers are equal to Rl and R2 respectively.

- The simplest case is that examined below when the points (%44, Yij) lie on a
straight line at an identical distance ALj from one another. Without limitations
on universality it can be assumed that this line coincides with the Ox-axis; the
point (x40, yio) is at the origin of coordinates. Then in formulas (1.7), (1.8)
x5 = JALy, y44 = 0 (i = 1,2; j = 0, tny) the displacements 7 i(x,y,t) are even

functions of x znd y. This makes it possible to limit ourselves to an analysis of

waves only in the region x> 0, y2>O.

The asymmetry of the initial rise of the indicated type is conveniently evaluated
by the parameter V., equal to the ratio of the characteristic length 2Lji of the
rise to its characteristic width 2Lpi( Vi = L11L51)° If as the conditional boun-
dary of the initial rise we take the isoline on wﬁich Z.i°(x,y) = 0.1Aj, then as
L1y it is desirable to take the maximum distance from it to the origin of coordin-
ates, and as Lpj it is desirable to take the minimum distance from it to the ori-

gin of coordinates.

- A further analysis of waves was made using the formulas (1.3), (1.6). The valucs
hy, hp, £ were taken equal to 0.8, 4.2 km, 10-3 respectively, as is characteris-
tic for the ocean floor. It was also assumed that L1 = { 5 = 52.4 km, ALy = AL,
= 30 km. In all the figures presented below the distance is measured in kilometers.

2. Assume that A] = 1, Ay = 0. In this case at the time t = O the free surface of
the fluid deviates from the position of equilibrium; the interface of the layers
is horizontal.

In an axisymmetric case from (1.3), (1.4) we obtair. approximate expressions for 23

and 42
’ - - - -
L A R VR RN A R AL A A T R 2.1)
where o o
7,= X-r-cwr:b‘,(’)l("’ﬂdr; 2,= S reos ruyth(r), (PR, (2.2)

4 0

and 771 coincides with the precise expression for the rise of the free surface of
a homogeneous fluid.

It follows from formulas (2.1), (2.2) and the results of [4] that the initial axi~
symmetric displacement of the fluid surface leads to the formation of surface and
internal waves attenuating with time. The first terms in formulas (2.1) corres-
pond to a surface wave; the second terms correspond to an internal wave. A surface
wave is slightly distorted due to inhomogeneity of the fluid and in the process

of its propagation causes a displacement of the interface of layers of the same
sign which is less by a factor of Hhol, The velocity of propagation 721 is evi-
dently close to c. The amplitude of the developing purely internal wave is maximum
at the interface of the layers; at the free surface it is H(&hz)'l times less
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and the velocity of its propagation is u,<< C. Due to the linearity of the ini-
tial mathematical problem the mentioned general properties of unsteady waves in
a two-layer fluid are correct for nonaxisymmetric initial displacements of the

type (1.7).

! 200 1 \2 el o

BRR min

Fig. 1. Form of free surface and interface of layers in initial stage of wave de-
velopment (Al =1, Ap = 0): a) isolines 102 z1; b) isolines 102 Zy.

The process of development of unsteady surface and internal waves in the case of
an initial displacement of the free surface of the fluid with ny = 7 (L11 = 295
km, Lpp = 145 km, Vj=2.04 is illustrated in Figures 1 and 2.

Thus, the initial displacement of the free surface of the fluid in the process of
its evolution leads to the formation of a spatial surface wave {1 attenuating with

time (Fig. 1,a) and disturbances of the interface of the layers 22 (Fig. 1,b),
representing (see (2.1)) a superpositioning of the developing internal wave and
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the "response" of the surface wave at the denmsity jump. In the initial stage of
wave development there is a subsidence of the central part of the rise ;i. The
maximum /3 values with t >0 are situated on the Oy~axis and move along it in oppo-
site directions with velocities close to c.

C TT=by e
- hours

Fig. 2. Form of free surface and interface of layers with large t (A1 =1, Ay =
0): a) isolines 102 223 b) isolines 107 21-

At a definite moment in time t = tg (5<tg <15 min) at two points txg on the Ox-
axis (x0>0) the displacement ); becomes equal to zero and thereafter two nonin-
tersecting regions with 71 < O are formed, these being situated symmetrically
relative to the Oy-axis. With an increase in t there is a broadening of these re-
gions and their joining into one (t = 15 min), taking in the origin of coordin-
ates. Points with a maximum depression of the free surface with t <20 min are
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displaced along the Ox-axis in the direction of the origin of coordinates and then
move along the Oy-axis in opposite directions, following the corresponding iso-
line of maximum amplitude. At an adequate distance from the origin of coordinates
the /1 isolines constitute closed curves, as is characteristic for axisymmetric
waves.

In the progess of submergence of the central part of the initial rise of the free

surface ¢ 1 the generation of an internal wave occurs. Initially it is a region

of negative 7  values; 7
2

is situated at the origin of coordinates (Fig. 1,b). In addition to a local depres-
sion of the density jump, an internal rise wave is formed which corresponds to the
main surface wave and moves with the velocity of long waves in a homogeneous flu-
id. It is the "response" of a surface wave, as was mentioned at the beginning of
this section. Its amplitude, as mentioned earlier, is thl times less than the am-
plitude of the surface wave.

max
X,y

In accordance with Fig. 1,b, in the neighborhood of the origin of coordinates in
the initial stage of movement of the fluid a region of negative 7, values is form-
ed, elongated along the Ox-axis. In the process of its evolution, when the main
disturbances of the free surface become small, purely internal waves are formed
(Fig. 2,a); the velocity of their propagation is uj<<c. It follows from a com-
parison of Figures l,a and 2,a that the spatial structure of the surface and in-
ternal waves qualitatively has much in common if -2, 1is considered, rather than

f2-

In the process of propagation of this internal wave it exerts a reverse effect on
the free surface of the fluid. The developing surface waves (Fig. 2,b) comstitute
a "response" of the internal wave at the free surface of the fluid. Their ampli-
tude is less by a factor greater than 107 than the maximum vertical displacements
within the fluid. The spatial structure of /3 and 9 with t>15 hours is different;
especially the positive 2] values are localized in an annular region, which was
not observed for internal waves. ’

At one and the same moment in time t the amplitude of a purely internal wave is
slightly dependent on the relative density drop &£, but the velocity of its prop-
agation and the amplitude of the surface waves caused by it decrease substantially
with a decrease in £ .

Thus, the initial displacement of the free surface of a two-layer fluid in the
course of its development can generate internal waves whose amplitude is of the
same order of magnitude as the amplitude of the initial disturbance. Such waves
attenuate considerably more slowly than surface waves and are dominant after de-
parture of the main surface waves from the region of the initial displacement of
the free surface of the fluid. In all cases for initial displacements of the
fluid surface elongated along the Ox-axis the waves of greatest amplitude are
radiated in the direction of the Oy-axis. Such a directivity of radiation of un-
steady waves is observed even with V1 values extremely close to 1.
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Assume that A; = 0, Ay = 1. In this case at the time t = O the free surface is
horizontal, the interface of the layers is displaced from the position of equil-
ibrium.

In an axisymmetric case from (1.3), (1l.4) we obtain approximate expressions for

by and by I
=tk # (@'A‘:z)“:- Zz"&/?zz”'z?‘/ - (- dﬁzz"/-z) Gz (3.1)
where 00 ) -
¢ = ‘);rca.s ret £ (P, ¢Rdr; §,= ;"“’""“z tA ), (rR)ar. (3.2)

It follows from formulas (3.1), (3.2), (1.7) and the results in [4] that the ini-
tial axisymmetric density jump leads to the formation of surface and internal
waves, The first terms in formulas (3.1) correspond to a surface wave; the second
terms correspond to an internal wave. The amplitude of the surface wave is of the
order of O(¢ ) and therefore is substantially less than the amplitude of the in-
ternal wave. It is evident that ), %8s,

The process of development of unsteady surface and internal waves in the case of
initial displacement of the interface of layers in the form (1.5), (1.7) with n,
=7 (Lyz = 295 km, Lpp = 145 km, Vz = 2,04) is illustrated in Figures 3, 4.

The initial displacement of the interface of layers of the fluid (Fig. 3,a) in
the process cf its development generates surface waves of two types: first, pure-
ly surface waves propagating with the velocity c¢ (Fig. 3), second, disturbances
of the free surface, caused by inhomogeneity of the fluid (Fig. 4,b), propagating
with the velocity of internal waves uj. The formation of surface waves of the
first type caused a slow subsidence of the central part of the initial displace-
ment of the density jump. These waves constitute two regions of positive Zl val-
ues propagating in opposite directions and having maximum amplitude values on the
Oy-axis (Fig. 3). Thereafter the deformations of the initial rise? 9 and the free
surface increase at the origin of coordinates, which lead to the formation of
slowly evolving internal waves (Fig. 4,a), which correspond to qualitatively sim-
ilar surface deformations of the fluid of opposite sign, representing the above-
mentioned second class of surface waves of small amplitude (Fig. 4,b). All the
considered waves are essentially three-dimensional., For initial displacements of
the interface of layers elongated along the Ox-axis the waves of greatest ampli-
tude are radiated in the direction of the Oy-axis.

It is clear from a comparison of Figures 1l,a, 2,a, 3,a and 4,a that the spatial
structure of the fields of purely internal and purely surface waves has much in
common, although these classes of waves have essentially different propagation
velocities. This conclusion can also be drawn from formulas (2.1), (2.2), (3.1),
(3.2). In accordance with (1.7), the spatial structure of the mentioned surface
waves 1s described by the sum of the integrals 7j or &3, for internal waves —-
22 or £ 9. It is evident that with Zi = 12, as a result of the replacement T =
uzc"'lt the integrals [ and § 2 assume a fOrm similar to 27 and €.
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Fig. 3. Form of free surface in initial stage of wave development (Al =0, Ay = 1)

a) isolines 102 25 b, c, d) isolines 105 41-

The amplitude of the internal wave to a considerable degree is dependent on the
initial parameters of the problem and this dependence is particularly important
in the case of large t values. A change in hj, hy and é , leading to an increase
in up, not only accelerates the development process, but also decreases the ampli-
tude of the internal wave at a particular moment in time, all other conditions be-

ing equal.

4. We will examine the influence of asymmetry of the initial disturbance on the
amplitude of surface and internal waves. We will assume that A'{ = max 21(x,¥,t)

X,y

with A; = 1, Ay = 0 and A} = max 27(x,y,t) with A = 0, A2 = 1. The V; = 1 value

X,y
corresponds to axisymmetric waves and )ji = 09 corresponds to plane waves.

The computed expressions A}' = AI( Vi,t) are represented in Fig. 5. The Vi values
are indicated on the corresponding curves. It therefore follows that A':'l'(l, t)< A'{
(Vgst) <A';(°0 , t) with ¥y>1. Accordingly, for initial rises of the free sur-
face and the interface of the layers elongated along the Ox—axis, with their
identical width, the amplitudes of the developing waves are greater than in an

axisymmetric case and increase with an increase in l/i. It is evident that
At(c0, £)=0.5 with large t, but AJ(Vy,t)=>0 with t—roco.
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PR

t=J % hours

20 _\\\> , ‘1\ ;

Fig. 4. Form of free surface and interface of layers with large t (A1 = 0, Ay = 1):
a) isolines 10277; b) isolines 10°%1.

In conclusion we will examine the problem of regions in the plane x0y for which the
form of the spatial wave differs little from the form of a plane wave. We will as-
sume that for such regions

72 @) -7 (v e) | €014 (4.1)

where 7 :o is the displacement corresponding to a plane wave ( ‘)i = ©0), The results
of computations of the boundaries of these reglons for an internal wave (1 = 2) in
the case A} = 0, Ap = 1 are shown in Fig. 6 (n2 = 7). The inequality (4.1) is sat-
isfied in one (in the initial stage) or two time-dependent regions of ell’psoidal
shape situated symmetrically relative to the Ox~axis (Fig. 6). With an increase in
t they withdraw from the origin of coordinates with the velocity “2’ decrease in
size monotonically along the Ox-axis, but change little in the direction of

the Oy-axis. At some moment in time this reglon ceases to exist. With an increase
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“in VZ the size of the regions along the Ox-axis in the time interval during which
they exist increases.

4 5 tmm A
i=/  t minutes 150 -
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.

*eean, .
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.
-.q erna,,
-0 -, . tou,,
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1

4 - ;0 . Y ty hours 4

Fig. 5. Dependence of A'}_' on t for differ- Fig. 6. Boundaries of regions for in-
ent Vv, values. ternal waves within which the inequal-

ity (4.1) is satisfied. The curves 1-6
correspond to the values t = O0; 1; 2;
5; 10; 15 hours.

Similar results are correct for surface waves 7; caused by initial displacement of
the free surface of the fluid [1].
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INTERNAL WAVES FROM INITIAL DISTURBANCES IN A TWO-LAYER FLUID

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 3 Apr 80) pp 136-142

[Article by A. A. Novik]

[Text] Abstract: A solution of the plane problem
of gravitational waves arising at the hori-
- zontal discontinuity of two flows of fluid of
different density is obtained and investigated.

We will examine two flows of an ideal fluid situated one beneath the other and ex-
tending without limit in a vertical direction. Assume that the lower flow has the
velocity cq and the density L3 the upper flow has the velocity and density c
and /02 and P >f2. At the inltial moment in time t = O the fluid particles are
imparted any aﬁd tional velocity and the initially horizontal discontinuity changes
somewhat. It is necessary to find the form of the discontinuity at any moment in
time t> 0.

We will cite the equations and boundary conditions of the problem of internal

- waves. We will use the horizontal line of separation of flows in an undisturbed
state as the x-axis, whereas the y-axis is directed vertically upward. We will as-
sume that the xy coordinate system moves in the plane of motion in a horizontal
direction with the constant velocity -

;_’g,‘/"‘ P26
Pr+ 92 ‘

Then the linearized boundary conditions at the discontinuity assume the form [2]

'f_"l;__’_ Pz(c/"'z) 99, _‘ .iyl_f/ Q'/“}) 2y, |
Pr {ﬁt P/*Pz ax +M] ' Pz[it prp 9x +”J’ 2
' 9 965 9 9% (3)
;M P9, ax ar :

n AR/ (4)
: : P, Ok Oy

1)

128

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

FOR OFFICIAL USE ONLY

Here g is the acceleration of gravity; /](x;t) is the deviation of the discontinuity
from the position of equilibrium; Vl(x,y;t) and ¥,(x,y;t) are the potentials of the
velocity of wave movement of the lower and upper fluilds; the derivatives of the
functions %7 and ¢, are taken with y = O.

The problem of internal waves is usually formulated in the following way. It is nec-
essary to find such a solution ¢1 of the Laplace equation in the lower half-plane,
becoming equal to zero together with the first—order partial derivatives with y =

- 00 and such a solution &) of this same equation in the upper half-plane, having
a similar behavior with y = 00, which on the axis y = O would satisfy the two boun-
dary conditions obtained from (2)-(4) by exclusion of the function N}, and also

some initial conditions. With known velocity potentials the discontinuity equation
is found using formula (2) by simple differentiation.

2. An analysis of the equations and the boundary conditions makes it possible to
simplify the problem somewhat.

First, the right-hand sides of the kinematic conditioms (3) and (4) are the normal
derivatives of the velocity potentials on the x-axis. Accordingly, regarding ‘?1
and ‘P as solutions of the Neumann problem for the lower and upper half-planes,
it is possible to represent them in the form of the corresponding potentials of a
simple layer and to check to see that the dependence

Z(9+9.)- ﬁhf-ﬁ(ﬁ% £Y) -

Z exists between them on the x-axis. Using this additional expression, following
from the continuity of motion, the boundary conditions for the velocity potentials
are transformed to a form similar to the Cauchy-Poisson condition at the free sur-
face, -

i‘h ll,_’_/

at: ﬁx /é’__.l- /_ﬂ. 0‘

at’
where

) j= P - P2 g = 28 (- "2)2

Pr+ P2 9 (p*-

For determining the ordinate of the discontinuity we also derive the simpler for-
mula

.‘.‘

ay, p,(c-c) 2
I, PalG=¢ %JM )

/
777 % ]
. / N A x .
Second, in this problem the initial values of the functions ‘7"1 9’ and "l have a
physical sense. However, the difference in the kinematic conditions (3)-(4) shows
that at the initial moment a zero velocity should correspond to a zero displace-
ment of the discontinuity, and on the contrary, a zero displacement corresponds to

equal velocities of the particles. This means that it is possible to stipulate only
two functions arbitrarily, for example,

. p (x; ?)-f(x), P, 4, (x,0:0)-p, 4, (x,iﬂ;' h=-F(x), 6)
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where F(x) characterizes the difference in the impulse pressures imparted to the
boundary particles of fluid flows. Using conditions (6), it is possible to find
the initial values of the functions %7, %5, N and their first time derivatives
[2]. In particular, the second initial condition for the function r? has the form

p(xi0) 4 =
it prh FO9

where F'(x) is the Gilbert transform of the derivative of the F(x) functionm.

The separation of the boundary and initial conditions affords possibilities for
use or application of the methods of the theory of functions of a complex vari-
able. On the basis of formula (5) using complex potentials it is possible to in-—
troduce the function s(zjt), analytical with respect to z = x + iy in the lower
half-plane, whose real part with y = O coincides with Y( and obtain for it the

equation 2 -32 s
a%s . ___‘Z_ [ e w2 (]
;tT*/eo’z‘“/iz M

and the initial conditions ]
o Il (Pl iFl)-
: - + X) ’ __—-——-2- [F (X) [ )
@ Oy=F@+ iF0 SR

3. We will examine the following solution of equation (7):

; % 0y Fl »
E@t)m-—te 67 4, (— 2%+ jLt )
k EY 7 2\

Taking into account the ambiguity of the Hankel function of the first kind enter-

ing into it the real E; and imaginary Ep parts of the limiting value of this
solution on the real axis from the direction of the lower half-plane are repre-~
sented by the formulas

é;(x;t)-z-’-—\//-.? [#, (p)cose - pysinlg 1],

7 : -
E(x: ) m=——== [ N, (p)sinltl+ Z(P)cos & |signx.
2( ) .2 //? [ ]

Here J'O(P) is the Bessel functionj NO(P) is tl’ie.Neumann function;

. /
P = /424. 71; 4-2-;—-1'-t\/§.

_ The general solution of the problem of internal waves is written in the form of
the convolution . o
2E(x7¢) ( _05(x:t) ;(x) +
2= " & ~F2) ot '

~ / /
+ £ (x2) ’Pf:'Pz Flix)+§ (8 *WF(X}. (8
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4. We will investigate the type of internal waves caused by the concentrated ini-
tial displacement of the discontinuity of the flows at the point x = O with the
total area Q, that is, with f(x) = QJ(x) F(x) 0. In this case from formula (8)

we obtain 7-0_[ (x t) £(Xt)]

The Gilbert transform E2 in the x-coordinate consists of two parts: the function
E;(x;t)2, taken with a minus sign, and a nonwave addition, whose t derivative is of
t e order of ‘E/p2 Accordingly, with large P values we obtain

ar z .
X e (05 - - . (9)
We will study the wave movement described by formula (9). As a result of the sym-

metry of the rise /] relative to the y-axis it is possible to limit ourselves to
the case when x> 0. ? o

‘ " AN N

MY SAAARA

Fig. 1.

The general nature of the waves is schematically represented in Fig. 1, which is
a graph of movement of the discontinuity of the flows at the fixed point x and

the instantaneous pattern of waves at some moment in time t. As unity for the ver-
tical scale we adopt the value Q/ /2w {f, and the parameters £ and T are equal to

Vi3 ' '

4 W-7) 4
We will examine the phase change b-p-£ , caused by transition along the x-axis
from a particular wave to the next, that is, AQ = 27r. Carrying out differentia-

_ tion for x and introducing the notation -48x = A, we obtain a general expression
for the wave length A as a function of £

»
A= 4l _—?_P- . : (10)

Formula (10) shows that with adequately large T the origin of coordinates generates
waves of the length

131
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3
FOR OFFICIAL USE ONLY

""‘"”’Tﬂ r (66

which, with advance along the x-axis are distended and at the points corresponding
to sufficiently large £ their length becomes almost the same (BR’x /9t2 ) as for
waves at the free surface of a deep fluid [3].

(11)

Similarly, a general expression is found for the wave period T as a function of T

L
r-zrz‘/j = a2)

With T<< € the internal waves have periods of about 4yrx/jt, which are P + £,/
1~ f92 times greater than the period of the waves at the surface of the deep
fluid. With the course of time the period T decreases and when T>>£ becomes close

to its limiting value
P27 4 = BB gy, a3
J 9 Pi=f:

This means that upon the elapsing of an adequately long time interval the fluid
level in this place will experience almost periodic oscillations.

The formula for the phase velocity

P T
- LS
Cp= VIt P8
shows that the waves move with a constant acceleration equal to j/2€9 which is

f3 f32//3 +}9 times less than the acceleration of waves at the free surface.
In addition, the phase velocity of the shortest waves (11) is equal to

p=N/E" *Pz 1%- 62' o

The group velocity of the internal waves, like the waves at the surface of a deep '
fluid, is equal to x/t.

Thus, in a coordinate system moving in the plane of movement in a horizontal direc-
tion with the mean mass velocity of the floes (1) and related to the x, y axes,
series of waves of the length 4yrl are propagated from the origin of coordinates

in both directions; these waves move to infinity, being distended in length and
accelerating. As time passes the distension and the acceleration of the waves at-
tenuates greatly, as a result of which a considerable part of the discontinuity is
covered with waves whose length, period and phase velocity are given approximately
by formulas (11), (13) and (14); their numerical values are cited in the table.

In a fixed coordinate system these extremal characteristics of the waves are as
follows:
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V {! \ je \/—- 15
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SN S| L, < \ =/ e+t
a2 :/( ; \ \‘. /'l' ! ./;.— /'0 [_P \//i
v ~ ¢ \/‘- v/
Table 1
pz/Pl Cl - Cz mlsec
' 0.1 1 10
Maximum length of internal waves, m
0.001 0.0001 0.001 0.13
0.01 0.0n01 0.01 1.28
0.1 0.001 0.13 12.94
0.9 0.06 6.07 606.78
0.99 0.64 63.73 6372.69
0.999 6.4 640.17 64016.74
Minimum period of internal waves, sec
0.001 0,004 0.04 0.4
0.01 0.013 0.13 1.29
0.1 0.045 0.45 4.8
0.9 1.22 12.15 ’ 121.52
0.99 12.74 127.46 1274.55
0.999 128.03 1280.33 . 12803.35
- Minimum phase velocity of propagation of internal waves, m/sec
0.001 0.003 0.032 0.32
0.01 0.01 0.099 0.99
0.1 0.029 0.287 2.87
0.9 0.05 0.499 4.99
0.99 0.05 0.5 5
0.999 0.05 0.5 5

We note in conclusion that formulas (13) and (15) for the wave period were derived
by L. N. Sretenskiy [Ll] from a special solution of the problem obtained in the form
of a Fourier integral and evaluated using the stationary phase method.
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INVESTIGATION OF EFFECT OF VERTICAL DENSITY STRUCTURE ON INTERNAL WAVES

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 25 Apr 80) pp 143-150

[Article by S. M. Khartiyev and L. V. Cherkesov]

[Text] Abstract: The effect of vertical density
structure on the kinematic characteristics
of free internal gravitational waves is in-
vestigated. The investigations are made both
for averaged density distributions and for
models with a vertical fine structure.

At the present time a considerable percentage of the investigations devoted to the
fine vertical structure of the ocean are directed to a study of the role played
by internal waves during its formation [1, 2, 8]. Closely akin to these investiga-
tions are the problems related to the influence of fine structure itself on the
field of internal waves [3, 4, 9]. Due to the experimental studies carried out in

- these directions it was possible to obtain a considerable number of different esti-
mates of the size of microscale inhomogeneities having the nature of stratification.
Such estimates, in turn, made it possible to choose the models most completely tak-
ing into account the real density distribution in the ocean [3] and making it pos-
sible to analyze the distorting effect of fine structure on internal waves [4, 91.

In this article, in contrast to [3, 4, 9], we study the dependence of the elements
of internal waves on fine structure parameters. In comparison with [3, 4], we give
a more detailed analysis of the influence of characteristic vertical scales of the
"fine stratification" ("sheets" with a thickness from 10 cm to 3 m were taken into
account) and high local values of the V4isald~-Brunt frequency on the kinematic char-
acteristics of internal waves.

We will examine a plane layer of an ideal inhomogeneous incompressible fluid of a
constant depth H. Assume that the density in an undisturbed state changes in con-
formity to the law

9, with _//’,s .Z-G g ,
o) = LA D < E et
£, with =-# < I<-#),
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where

4 Hy = £
7@ =1
aH Y4

’

AH is the thickness of the thermocline (A" = H, - Hy); Apis the total demsity
2 1 P
drop (Ap= Py - Fl).

We will arbitrarily break down the thermocline (-H2€; Q—Hl) into m parts, retain-
ing AH and AP invariable L . .

o, — P
4//-;446.4-;4,65., AP-; a9, - n

Here we use AH: to denote the thickness of the homogeneous layers (laminae) and Ahj
is used to denbte the thickness of interlayers having the density drop APi
("sheets").

- Thus, we obtain
(7] with ~# < Z<0,
gni)‘ 'fﬂ!(z) with ~%< Ts-,,

$1 wien < T€M2

where im(;) is the new density distribution containing fine structure elements.

We will investigate the kinematic characteristics of free internal gravitational
waves for an averaged stratification model Po(z) and for a model with a fine struc-
ture Pp(z). Comparing the results of these investigations, we study the influence
of the parameters of fine structure (m, AH;:], Ay, Af;) on the modal composition of
internal waves.

As the initial equations of motion we will take a linearized system of Euler equa-
tions. We will select the origin of coordinates on the undisturbed free surface of
the ocean. We will relate the dimensionless variables with the dimensional variables

by the expressions
Ta Wz, X #x, ToHg, &=\ [977E, B= 94 4.

AN PPN OV A (O S

Here the function Z(x, t) determines the form of the free surface; Vs ;z are the
horizontal and vertical components of the velocity vector of the wave disturbance;

F)g (;) is stationary density (&= 0, m), ; s F are the dynamic increments of pres-
sure and density. Seeking periodic solutions in time t and in the horizontal coor-

dinate x in the form
(P9 s o §) =[A(2) K2 U(2), W) S ] explé thx+ 0]

we arrive at an equation relative to the amplitude of the vertical velocity compon-
ent W(z)

136

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040063-3

FOR OFFICIAL USE ONLY

4t .zz)-ygee._’” ),‘z-,;
d ¢ 22 d: 0? Fe (2)

with the boundary conditions

e
AW _ A ey withz =0, W=0with z = -1. (3
dz 6t

7 (005 P

A solution of the boundary-value problem (2)-
(3) was obtained numerically by its reduction
to the Cauchy problem with subsequent use of
the Runge-Kutta method [6, 7]. With stipula-
tion, for computations of the continuous dis-
tributions Fb, fPm it was assumed that the
density in the interlayers Ahj changes lin-
early.

-002 |

Figure 1 shows models Pe (2) (l=o0, 5, 9,
22). Their numerical characteristics for
dimensionless variables are represented in
Table 1. The points 'zvi in the table corres-
pond to the depths Gi = -102:24, -1<24<0)
at which the density values Pp(Zj) (change
in density between these points is assumed
to be linear)are stipulated. The maximum
values of the VAisald-Brunt frequency for
the P, distributions are given in the third
line in Table 1. Assume that H = 4+103 m.
Then Hj = 80 m, Hy = 120 m; the thickness of
the "sheets" Ahj is equal to 1 m with m =
1, 0.5-1 mwithm = 9 and 0.1-3 m with m =
22,

=002725 The kinematic characteristics of the internal
waves corresponding to the f#(z) distribu-
tions are given in Figures 2, 3. The solid
lines correspond to the model f,; the dot-
dash lines correspond to Pg5; and the dashed
and dotted lines correspond to P9 and 322
respectively.

Fig. 1.

Figure 2,a,b shows dispersion curves of the second, third, fourth and fifth modes
of internal waves (the figures designate the number of the mode). Between the
curves of the models Py, P5, P9 there is a discrepancy which already becomes
significant in the region of quite long waves 1< k< 5. For example, with k = 3
the period of oscillations of the third internal mode of the P 5 model will then
be 1 1/2 times less than the period of this same mode in the case of an averaged
stratification. With 1< k<5 the dispersion dependences are close to linear.
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Table 1

0 -5 8 22 m

] 1 .3 5 12 2

0.8825" | 1,0888 28333 0.8957 v

Z; (9.(3) A IR ) @) Z; P22 | ¢
0 1| 1 0 1 )

2 1 1 2 1 2 1l ;

4,75 |1,008 |2, 1,001}2,6125| 1,0005| 2,00825 |1,000025 | 3

100 1,008 |2 1,001 {2,1375 | 1,0005 | 2,08125 |1,000525 | 4

) 2,375 | 1,002]2,15 1,0015]. 2,1 1,000525 | 5

2,725 |.1,002[2,275 | 1,0015} 2,106825 | 1,00055 | 6

2,75 |1,003}2,3 1,002 | 2,125 1,00055 | 7

: 1,008]2,5 1,002 | 2,2 . |1,00105 | 8

2,525 | 1,0025| 2,21875 |1,00105 | ©

2,725 | 1,0025 | 2,22125 | 1,001082) 1¢

2,75 | 1,008 | 2,23875°|1,001082 { 1

100 1,003 | 2,23875 {1,001075 ] 12

2,25125 |1,001075 | 13

2,2575 | 1,001 14

2,275 1,001 15

2,35 1,0014 16

2,375 1,0014 17

2,45 1,0017 18

2,478 1,0017 19

2,55 1,002 20

2,578 1,002 21

v 2,88 1,0025 | 22

2,875 1,0025 |23

2,78 -1 1,008 24

100 tt008 128

In the region k>5 the behavior of the dispersion curves becomes more complex. Here
in models with a fine structure Pj5, g resonance zones are formed [5] and anomal-
ies appear in the neighborhood of the so-called critical frequencies at which some
characteristic value of one waveguide coincides with some value of the other [3].
For model Pg, which contains the greatest number of "sheets" and in these inter-
(in comparison with ps) local values of the VAis#1A-Brunt

layers having the maximum
frequency, the anomalous effect is expressed more strongly than for P 5. This is

evidently attributable to the fact that with an increase in the local values of the
V4is414-Brunt frequency Ni the region of characteristic frequencies of individual
waveguides (Ahj) expands accordingly (6<Nji) and the probability of coincidence

of the characteristic values of the different "sheets" increases. The greater the
number of poorly interrelated waveguides (that is, the number of "sheets"), evident-
ly, the more probable will be the cascs of coincidence of their characteristic fre-
quencies. We will mention the ranges of critical frequencies for the fifth, fourth
and third modes of internal waves of the model Pg. With 0.4k <10 we obtain
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0,25<¢, - 10% < 0,31,
0,31 <t74,-102 < 0,38,
0,88 < g. 10°< 0,45.

502
- 05

Fig. 2. Fig. 3.

Table 2 gives the ratios of the maximum values of group velocities for the first
five modes of internal waves of the models Pg and 2, (V9/Vp). The strongest in-
fluence of the fine structure on grcup velocities is observed (beginning with the
third mode) in the region 5< k<7 in which all the ranges of critical frequencies
0.25<6-102<0.45 (Fig. 2) fall. In this region the group velocities for the aver-
- aged model greatly exceed the "fine stratification” values. With 7<kg10 the

group velocity V_ increases sharply and becomes greater in value than Vg, but this
difference is alfeady less significant than in the region 5<k<7.

Thus, an increase in the number n of "sheets" with high local values of the vdisall-
Brunt frequency in the structure of the thermocline (with retention of the relation-
ships (1) and a weak correlation between the waveguides) leads for the most part to
- the clearest manifestation of anomalies in the dispersion curves, which exerts a
substantial effect on the group velocity of the internal waves. However in quantita-
tive estimates the decisive role is played by the parameter m -- the total number
of layers. For example, the anomalous effect for the f35 distribution is expressed
more weakly than for'f>9. Nevertheless, the discrepancy in the dispersion curves
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for models £ and )Oo is far more significant than in the case Qg and P, (Fig.
2). That is, gespite the fact that with an increase in m there can be rather strong
anomalous effects in the dispersion relationships, the discrepancy between the dis-
persion curves of models /DO and Fm, as might be expected, decreases with an in-
crease in m. -

Table 2

# . Ighs7 T< k< /0
h 11l 2 8 4 5 .12 3 4 5

Yo/, 1 {1,070 |0,43 }0,5(0,57| 1 f1,08 |1,38 {18 1,5

Although the relative changes introduced by the fine structure in the region of
short waves increase (for example, the frequency of oscillations for one and the
same wavelength can decrease by several times), this is not reflected very apprec-
iably, evidently, in the amplitudes of the internal waves. It was demonstrated in
[9] that for the region 1/240'2/1‘102% 3/4 the relative changes in amplitudes con-
stitute less than 10%. From this point of view, the sector O 2/N02< 1/2 (Fig. 2) is
of definite interest because for it there are already rather considerable discrep-
ancies in the periods of oscillations of internal waves having a quite great length.

Figure 3 shows the depth distributions of the amplitudes of the third and fifth
- modes of the vertical and horizontal components of the velocity vector of wave
disturbance, computed for the models Pe (b=0, 5, 9, 22) with k = 10 and related
to their maximum values. It can be seen that the presence of elements of fine
structure leads to a displacement of the nodal and extremal points in the thermo-
cline, which in depth fall for the most part in the interlayers Ahj. Such a dis-
tribution of extrema for the high modes causes a concentration of movement in rath-
er narrow "sheets" (Fig. 3,b). However, this effect occurs only for the Ps model.
In comparing the fine vertical structure in the models PS’ Pg, PZZ’ we note that
the "sheets" (A hy) alternate successively with laminae (AH_-]). In the L5 model
the ratios AH;/A hy will be maximum. Thus, one of the necessary conditions for
the concentration of the higher modes in layers with high local values of the
v4is814-Brunt frequency is the existence of a weak correlation between the "sheets"
in the vertical density structure. A numerical analysis indicated that the velocity
profiles, computed from models with a fine structure, are more sensitive (especial-
ly the horizontal component, Fig. 3) to changes in the wave number than the profile
with an averaged stratification. For example, the amplitude of the fifth mode of
the vertical velocity component for the Pg model at emergence from the thermocline
with k = 10 attains its maximum value; with k = 3 this value will already be 227%
of the maximum. The amplitude values W(z) for the third mode of the P 5 model
(with k = 3) and the fifth model of the ,022 model (with k = 10) at the entry into
- the thermocline and upon emergence from it constitute 50% of the maximum, whereas
for the averaged stratification (P model) these values, all other conditilons be-
ing equal, will be maximum. Such a redistribution of extrema and frequencies, in-
troduced by the fine structure (Figures 2, 3), can exert a substantial influence
on the kinematic characteristics of internal waves beyond the limits of the ther-
mocline. For example, for the third mode of the FS model the
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value of the vertical velocity component with x = 0, k = 3 at the depth H/2 at the
times t = 5007, 10007 will constitute 0.23, 0.18 of the maximum (unity) respec-
tively; in the case of an averaged density, all other conditions being equal, -0.1,
-0.46. Thus, the distorting effect of fine structure will lead to a change in the
intensity and direction of velocity beyond the limits of the thermocline.

Now we will clarify how the dimensions of the "sheets" Ah. exert an influence on
the elements of internal waves. We will take an averaged stratification /OO(Z) with
the parameters H = 4-103 m, H) = 80 m, Hy = 120 m, AP= 0.0006 g/cn, Ny = 0.014
Hz. We will model the fine structure by the Pg distributlon containing three
identical waveguides (Ahj = 2 m, 4p; = 0.0002 g/em3), two of which are situated
on the boundaries of the thermocline and one in the middle. The density distribu-
tion Ps5(z) is obtained from the Ps model by decreasing Ahy (i =1, 2, 3) by a
factor of 4 and retaining the former AH, APvalues. Computations 1ndicated that
the vertical structure of the modes of internal waves of the model P almost do
not differ from the vertical structure of the corresponding modes of tge P 5 model
with one and the same k values. However, there can be a strong discrepancy in the
periods of oscillations of these modes of identical structure. For example, with k

= 10 the periods of oscillations of the fourth mode of the Ps5, 5 models are re-
lated as 1l:2 respectively, although with respect to vertical structure the modes
of the Pg and P5 models virtually coincide.
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EFFECT OF FINE STRATIFICATION ON INTERNAL WAVES GENERATED BY PERIODIC ATMOSPHERIC
DISTURBANCES

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 12 Dec 80) pp 151-158

[Article by S. M. Khartiyev and L. V. Cherkesov]

[Text] Abstract: A study was made of the influence of
vertical demnsity structure on the kinematic
characteristics of internal waves generated by
surface disturbances, periodic in time, occurr-
ing in a limited region. The investigation is
carried out both for an averaged stratification
and for a distribution with a vertical fine struc-
ture.

An investigation of the influence of vertical density structure on the elements
of free internal gravitational waves was carried out in [1-5].

In this article we examine the distorting effect of fine stratification on the kin-
ematic characteristics of internal waves generated by surface disturbances, per-
iodic in time, occurring in a limited region.

1. Assume that pressures in the form B

5D = af- e,
are applied to the free surface of an inhomogeneous ideal incompressible fluid of
finite depth, where f is an even continuous function equal to zero with |x L>B. We
‘have investigated the kinematic characteristics of internal waves arising under
the influence of the applied pressure system, with averaged stratification O (z)
and in the case of a distribution with a fine structure P (z). Comparing the re-

sults of these investigations we will evaluate the distorting influence of fine
structure on internal waves.

We will select the origin of coordinates at the undisturbed free surface. The z-

axis is directed vertically upward. We will relate the dimensionless variables and
the dimensional relationships
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i=HX,. Z-HZ, f- //y-’f, ;/;!-'- Hth, 7"{-\/9-7;&’5‘"’

B~y Bt Ty e OR 0 Op For P9
BB Eop@gle, bty s

yhere/og is the density distribution in an undisturbed state (l= 0, m); Vyoyu
v_p are_the horizontal and vertical velocity components; (;, are the free surface
rises; 7{p is the deviation of the streamline at a particu{ar depth from the un-
disturbed position; /OL, R} are the dynamic increments to pressure and density. The
linearized level of movement and boundary conditions in dimensional variables have
the form (the subscript Z in formulas (1)-(8) are omitted as a simplification)

o Ry P 0% .
L Pamae PEETEY W

Y A . aw d
ErwEl Emr# v @
. p_¢_P i;/déab’z with z = 0, v, = O with z = -1, (3)

2. Solving the boundary-value problem (1)-(3) much as was done in [6, 7], for the
vertical velocity component we obtain thglgxpression

ais T EEW 0 .

]
SNz e
where f is the Fourier transform of the function f;

sk =W kD -FIRD), )

and the function W satisfies the equation (the prime and the superscript k denote
the derivatives of z and k respectively)

'~_,Q¢VI)’-,€2[P{+0’50]5'2W=0 _ (6)

with the initial conditions

(4)

Y s 4 . ’
Wk <0, Wl-N<1 0
The integrand in (4) has singularities with k values satisfying the equation
a0 (8)
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We will demonstrate that this equation has only purely imaginary and real roots.
We mill multiply (6) by a function complexly conjugate with W and we will inte-
grate along the segment -1< z< 0. Taking into account the conditions (7) and ex-
pression (8) we obtain

fplk"l"d% "

PR

.-":."t‘ 2 2
B A.- — 7 . _"“‘ 2 o’ .
W=\ dz
: L -7 Lo
It therefore follows that all the k values can be only purely imaginary or real
numbers situated symmetrically on a complex plane relative to the point k = 0.

For computing the integral (4) the integration path (4) will be deformed into a
contour running along the real axis and passing around the poles situated on it
in small semicircles in such a way that the natural radiation condition is satis-
fied. Computing the integral by the residues method, we obtain

S W ,
Re v, -Eo W, )
where 2z
- )é r/] . , ,
W, =—alir 6 ‘,7”‘) W (k.2) o5k + 52),
] . ﬁb(/u) J

The sum in (9) is taken for all real roots of equation (8) because the contribution
from the complex roots attenuates exponentially with an increase lx [ of the dis~
turbance (the solution is considered far from the pressure region

The solution of the Cauchy problem (6)-(7) and equation (8) was obtained numerical-
ly with use of the Runge-Kutta method [8]. By determining V,j it is easy to find
"L’ Vx p respectively from the kinematic condition and continuity equation.

3. We will carry out the further investigation for the density distribution '00’
Pl (Fig. 1, Hy = 0.02, Hy = 0.0425) and the f function in the form

r7f [x] = £,

FO=4
10. Ixl = £

~
Figure 2 is a graph of the dependence of the amplitude Wp ('naxlvzal during the pei-
jod T at a particular depth) on the vertical velocity component as a function of z.
The solid curve corresponds to L = 0, the dashed line corresponds to { = 7. The
computations were made with a = 1, b = 39.15, x5 = -100 for the periods T; = 1571,
Ty = 1142, Ty = 898 (the characteristics in dimensional variables for different
depths are given in Table 1). We note that it was not possible to satisfy computa-
tions for T< T as a result of the dispersion of the numerical method.

It can be seen (Fig. 2) that fine structure exerts a substantial influence on the
depth distribution of the maximum values of amplitudes of the vertical velocity
component of the wave disturbance. With a decrease in the period of oscillations
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the difference in the amplitudes of ﬁO’ ﬁT is intensified. The fine stratiﬁica—-
tion can both increase (T = Ty, T2 and decrease (T = T3) the amplitude of W¢.
The strongest discrepancy in the Wp, Wp values is observed for the period T3

at the emergence from the thermocline (z = -42.5, Z = 2.107), where the absolute
- ‘maximum Wg is attained. Here W, = ;’,43-%.
7 A 2k TR
KU\ K, | # [ M Y [ % hours.  Table 1
: . b
M Ml M |1] 2i3 |4 M M 1 2 3
2 40 | 8 [1/1,3]08]2] 78,8 200 8,28 | 4,58|3,56
. 80 (170 | 2|8 |1 }|4]156,8 400 8,81 | 8,41{5,08
120 [258 314,3/1,8]6]|234,9 goo  |10,79 | 7,88]6,17
z 5 ST 109/
T ' P
-907
A/t,
. ah, !
_ |
84, s
\F
\l
A
-g425 Fig. 1.

We note that the difference in the amplitudes ﬁO’ VJ-/ exists not only in the thermo-
cline region (-42.5< 2<-20), but also beyond its limits. For example, during the
period T2 in the upper homogeneous layer with -20< zZ&€-5 Wo exceeds Wy by more than
a factor of 2., The same picture is observed during the period T1 in the region -20<
z<L-15.

For the period T3 the greatest difference in the values Wo, ﬁy is observed in the
entire lower homogeneous layer where the amplitude W; exceeds by a factor greater
than 2 the corresponding Wo va']:'ue.MThe computations indicated that such a strong

discrepancy in the amplitudes Wo, W7 during the period T3 is attributable primarily
to substantial differences in the modal composition of the internal waves for the

models Pqs P7-

Figure 3 shows the functions Whi, VO3 (VL4 are the harmonics of horizontal velo-
city, i = 0, 1, 2,...), computed at the time t = 310, when sz_ during the period
T3 attains (in absolute value) its maximvem level. It can be seen that in the case
of averaged stratification there is obviously a dominance of the harmonics W } 0,
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in the entire depth, that is, surface waves. In the case of a fine stratif-
icaglon with the formation of the velocity profile V,g¢ the most important role
is played by internal waves (in particular, the first internal mode). A similar
manifestation of the fine structure is also observed during formation of the
horizontal velocity profile. The structure of the internal modes V74, in contrast
to Vgi» has a clearly expressed power-law character (Fig. 3,b).

Table 2 gives the maximum (in absolute value) values of the parameters and Vg )
during the period T with z = -Hy, -Hy (g = max |np |10, Vyp = mix [Vgp|* L= 0.7).
Since the profile of horizontal velocity in homogeneous layers forms straight
lines parallel to the z-axis, the v Evalues will also be correct for the regions
-1x z<-H, -Hy< z¢ 0. The differences in the amplltudes on, V47 in the upper and
lower homogeneous 1ayers in comparison with VzO: 27 (Fig. 2) are not so signif-
icant. The discrepancy is greatest when T = T, in the upper homogeneous layer,
where Vy7 = 1.96 on.

PSR S

Fig. 2.

. The greatest difference in the Yl and YL7 values at the entrance into the thermo—
cline are observed during the periods T; and T2, for which 7, = 0.28 rL 717
0.43 Q respectlvely. With T = T3 the picture changes. A considerable dlscrepancy
in the Yzl values is observed with emergence from the thermocline, where the fine
- stratification increases the amplitude of the oscillations by a factor greater
than 3.
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Proceeding on the basis of the data in Table 2, we will give the limits of change
of the Vy4and Y]L parameters for the periods TJ G =1, 2, 3).

In the case of an averaged stratlflcatlon P (z) with an ocean depth H = 4 km and
atmospheric pressure a = 2° 102 Pa we obtain

0.145V,(<0.24 (m/sec), 5.6 $QH<E19.2 (m).

For the model /07, all other conditions being equal, we have

0.15<V,;50.32 (u/sec), 4.1$7;521.2 (m).
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Table 2
7 7 7 7
I \h ok | -H Lk -k 4
71 ’ 1,76 1,38 1,65 2,33 2,21 2,38
Vo 1,54 1,45 3,24 2,27 1,89 | 2,51
A 7,43 9,82 8,96 9,60 2,80 | 3,20
7, 2,08 7,48 8,02 7,88 4,78 | 10,80

4. We will estimate the amplitudes of the kinematic characteristics of internal
waves at the ocean surface. The fine stratification of the thermocline exerts vir-
tually no influence on the amplitude of the vertical velocity component of the

- wave disturbance at the free surface (Fig. 2). The distorting effect of fine
structure on the horizontal component is more significant. For the periods T; and
T4 the discrepancies in the amplitudes ' » Vy7 at the free surface are 10 and
147 respectively (on - 100%). With T = ¥2 this value will already be equal to
96%. Computations have shown that such a strong discrepancy in the amplitudes of
Vx0»> Vy7 for the period Ty is attributable to the distorting effect which the
fine structure exerts on the modal composition of the internal waves (the fine
stratification exerts virtually no influence on the surface mode, that is, Voo
(0,£) = V70(0,t)).

Conclusions

Fine stratification exerts a significant influence on the depth distribution of
the kinematic characteristics of the wave disturbance; depending on the period of
oscillations it can both increase and decrease them.

As a result of the distorting influence of fine structure on the modal composition
of internal waves the profiles of horizontal and vertical velocities in the ther-
mocline region can experience structural changes of considerable amplitude (the
values of the vertical velocity component can more than triple).

The distorting effect of fine structure exists not only in the thermocline region,
but also beyond its limits; in the upper homogeneous layer it exerts the strongest
influence on the horizontal velocity component, whereas in the lower homogeneous

layer it exerts the strongest influence on the vertical velocity component.

The presence of a fine stratification of the thermocline can lead to an appreciable
increase (by a factor of 2) in the amplitudes of the horizontal velocity of the
wave disturbance at the ocean surface, but this leaves the vertical velocity value
unchanged.
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EVALUATION OF POSSIBLE VALUES OF PARAMETERS OF INTERNAL WAVES IN SOUTH POLAR
FRONT ZONE

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian (manuscript received 7 Jul 80) pp 159-167

[Article by N. P. Bulgakov and R. A. Yaroshenya]

[Text] Abstract: On the basis of hydrological
data with the use of a frontal zone mod-
el the authors give an evaluation of the
possible values of elements of the field
of internal waves for the south polar
front.

Data from in situ observations [19, 20] indicate that frontal zones are regions

of increased intensity of internal waves in the ocean. This explains the inter-

est in a model study of these zones as one of the important factors in the gener-
- ation of internal waves.

In sources [2, 17, 18, 26, 27] the frontal zone is modeled by a jet of constant
width. Beyond the limits of the jet the fluid is assumed to be motionless. The
effect of Coriolis force and the slope of the free surface and the discontinuity
is taken into account.

Within the framework of a three-layer model of the ocean [4] a study was made of
a thermal frontal zone constituting a rising or subsidence of cold waters, which
is attributable to the curvature of a density discontinuity.

A frontal zone in the form of a region with a constant horizontal density gradient
in a two-layer ccean was examined in [2, 3, 5]. The velocities of flow, related to
a horizontal density gradient, are assumed to be of the same order of magnitude
vith the velocities of wave disturbances. We note that in the enumerated studies
the indicated models of a front were used for studying the general laws of genera-
tion of internal waves outside and inside frontal zones of different types, but
were not used in precomputing the parameters of internal waves in any specific
frontal zone in the ocean.

In this article an attempt is made to obtain an evaluation of the possible values

_ of the parameters of long-period internal waves for the south polar front (SPF).
The analysis 1s made on the basis of hydrological data with use of an earlier de-
veloped model of a frontal zone described in detail in [2, 3].
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The principal objective was, assuming the amplitude and frequency of an oncoming
barotropic wave to be known, to detect the dependence of elements of the gener-
ated internal waves on the parameters of the SPFZ (south polar front zone) (width
of zone, depth and latitude, thickness of layers, horizontal and vertical density
drops). The choice of this zone is attributable to the relatively good study of
this feature.

In solving the formulated problem it is important to know the spatial-temporal var-
iability of the position of the frontal zomne and its genetic characteristics. How-
ever, among the investigators of the SPFZ there 1s no unanimous opinion concerning
these matters. The authors of [4] analyzed different points of view concerning the
spatial-temporal variability of the SPFZ; an attempt was made to evaluate its posi-
tion and clarify its genetic characteristics.

In 1937 Deacon [21] was the first to determine the position of the SPFZ as relative-
ly stable (the distance between extremal positions did not exceed 60 miles); he de-
fined the frontal zone as the boundary region between subantarctic and antarctic
surface waters. On the basis of the temperature distribution in the water layer he
advanced the hypothesis that the position of the SPFZ is governed by bottom topo-
graphy, by the movement of deep and bottom waters. In 1946 Mackintosh [24] fixed

the changes in the position of the zone to be 24-29 miles.

V. N. Botnikov [6], on the basis of data from the Soviet Antarctic Expedition of
1955-1958, and also the materials of the "Discovery" expedition, examined the ver-
tical distribution of temperature and established that the 2° isotherm at the hori-
zon 100-300 m characterizes the northern boundary of the SPFZ and that the devia-
tion of the position of the SPFZ from the mean does not exceed 60 miles. Yu. A.
Ivanov [11] assigns a decisive role in the formation of the fronts to the nonuni-
formity of the wind field; he defines dynamic frontal zones (zones with extremal
vertical velocities -- divergence and convergence) and accompanying physical front-
al zones in which there are clearly expressed physicochemical characteristics.
Theoretical computations made it possible to detect a great seasonal variability
of the geographic position of the south polar front zone —-- up to a total of about
8° in latitude.

However, the author of [14] notes the erroneousness of some premises adopted in
[11]. These led to a discrepancy between the theoretical computed values of dis-
placement of the frontal zone and the values cited by other authors based on ex-
perimental estimates. At the same time it was demonstrated that Deacon's ideas
concerning the decisive effect of deep and bottom waters, and also bottom topo-
graphy, on the position of the front agree with the results of hydrological ob-
servations. This same study [14] gives a hydrological section along 55°W through
the reglon of the south polar frontal zone (Fig. 1). Figure 1 shows that over a
distance of 20 miles (between stations 4 and 5) the temperature decrease is 2°.

Data in the literature make it possible to conclude that there is a relatively
low variability in position of the south polar frontal zone.

However, it is demonstrated in sources {1, 7, 9, 10, 15] that the positions of the
SPFZ substantially differ from one another (Fig. 2).
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Fig. 1. Distribution of water temperature.
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Fig. 2. Positions of south polar front according to data published by Bulatov (1),
Burkov, et al. (2), Gruzinov (3) and Stepanov (4); shaded region -- south polar
front zone from ATLAS OF THE OCEANS.

R. P. Bulatov [7] defined ocean fronts as the boundaries between macroscale systems
of ocean circulations having an opposite direction of movements of waters situated
in different climatic zones and discriminated on the basis of the general back-
ground of geostrophic circulation. Such a scheme was compiled using dynamic heights
computed from averaged observations at different spatial-temporal scales (for

one, five and forty degree squares with mean monthly, mean annual and semiannual
values). The zone of the south polar front virtually does not react to a change in
averaging scales.
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The authors of [9], on the basis of data on geostrophic circulation, prepared from
mean long-term hydrological data for 5° squares, defined oceanic fronts as re-
gions of crowding of the dynamic contour lines between adjacent circulationms.

V. M. Gruzinov [10] developed a scheme of geographic zones in the world ocean,
the basis for which is the natural boundaries which are the main oceanic fronts.
The south polar frontal zone is one of those zones in the ocean between two main
circulations and the boundary between different vertical water structures.

In the ATLAS OF THE OCEANS [1] the south polar frontal zone is represented as a
boundary region of displacement of different types of water structure.

V. N. Stepanov [16] demonstrated that the position of five types of fronts, among
which one is the south polar front, is closely associated with geographic zonal-

- ity. The south polar front is less active and is discriminated from the maximum
lorizontal gradients of thermohaline characteristics, the maximum vertical and
horizontal current velocities, and the discontinuities of macrocirculation systems
and water masses. On the basis of computations of circulation in the entire layer
of ocean waters in accordance with the A, S. Sarkisyan model [13] Stepanov deter-
mined the position of quasistationary fronts, also examined the vertical position
of the front and discriminated a stable position of the dynamic zones in the en-
tire ocean layer at O, 200, 500, 1000, 2000 and 3000 m.

A special point of view on the genetic characteristics of the south polar zone 1is
expressed in [8, 12, 22].

The thought that the boundary between the warm and cold waters of the ocean emerges
at the surface in the region of the polar fronts was expressed for the first time
by Defant [22] in 1928.

N. P. Bulgakov [8], on the basis of his investigations, demonstrated a correlation
between the main thermocline and the polar fronts.

V. V. Klepikov [12] pointed out that at approximately 40°S the isotherms character-
izing the main thermocline rise toward the ocean surface. The mean annual tempera-
ture of the water surface here is 3.5°; it is characteristic for the lower boundary
of the main thermocline. The sharply expressed maximum water temperature gradients
at the horizons 100 and 200 m serve as proof that the SPFZ is associated with pro-
cesses manifested not only at the ocean surface, but also in the deep layers. The
mean horizontal temperature gradient is approximately 0.1°/km. The fronts asso-
ciated with the main thermocline are called the main fronts. They are usually situ-
ated at 40-60°S. The frontal layer extends to a depth of 500-1000 m and the frontal
surface slopes to the horizon in the range from several minutes of angle to 1-2°.

In [25] the south polar frontal zone is characterized as a region of high meridion-
al temperature gradients observed in the surface waters around Antarctica at 50°S.
On the basis of a review of the studies it was possible to discriminate some of

its characteristics. The lower boundary of the zone is situated at a depth of 200-
300 m and the isotherm 2°C is characteristic for it. The temperature minimum is
related to the seasonal thermocline and the position of the front varies from 44

to 60°S.
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Fig. 3. Position of south polar frontal zone.

In [23] the author cites a diagram of the south polar frontal zone. From this it
can be judged that the width of the zone varies in the range 20-200 km (Fig. 3).

Such a diversity of judgments concerning the spatial-temporal variability and gen-
etic characteristics of the south polar frontal zone makes it necessary to sel-
ect the parameters of zones in definite ranges for computing the generated inter-
nal waves.

) The section cited in [14] confirms the correctness of cholce of a two-layer model

- of the south polar frontal zone (Fig. 1). The upper layer of the frontal zone model
is characterized by a horizontal density gradient. The SPFZ around Antarctica varies
from 45 to 60°S; the maximum depth here on the average is 4 km.

The thickness of the upper layer (frontal layer), since the ocean in the model is
assumed to be two-layered, varies, according to data from different authors, from
100 to 1000 m. The density in the neighborhood of the investigated frontal zone 1s
taken from [15].

As the initial system of equations describing wave movement within the frontal
zone we write a system of equations of long waves

he=204= 90, (£31)x t 4 (2040 )=0.
U= 20h=-9p; [f’/z (Q'Z;) + P4 ],v Vot Uz(2w+[{x)=0,
ek Vi p/;,/ll (a/P/z)x v i m A, Gy

All the notations, description of the model and solution method were set forth in
[3, 5]. '

As demonstrated by the computations, the amplitudes of the internal waves at the
periphery of the frontal zome (regions I, III, Fig. 1 [3, 5]) are essentially de-
pendent on the width £ with a fixed value of the demsity drop Ap(ap= P13 - Pi11)
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within the frontal zone. The width of the SPFZ is not constant in different regions
(Fig. 3) and varies from 20 to 200 km. The greatest values of the amplitudes of in-
ternal waves are observed in those regions where f is minimum (regions by, b3; djs
d3) and can attain 50% of the amplitude of the oncoming barotropic wave. Relative-
1y small values of the amplitudes of internal waves must be expected in those
places where the width { is maximum (regions aj, aj; c1, ¢35 /1> {3). True, the
minimum values of the amplitudes of internal waves in this case may not be attained
with the largest £ ( / = 200 km for the SPFZ), but with lesser values (100¢f< 200
km). The maximum values of the amplitudes of internal waves in the regions aj, aj;
c1s €33 [1’ / 3 do not exceed 10% of the amplitude of the oncoming barotropic
wave.

Since the thickness hj of the layer of the frontal zone in different regions (ac-
cording to data from different authors) varies from 100 to 1000 m, then, assuming
the mean depth of the layer to be equal to 500 m, we find that due to the deviation
of hy from the mean value the above-mentioned values of the amplitudes of internal
waves can vary. In the region 500<hj <1000 m they cah increase by 5-20%, and in
the region 100<h;<500 -- decrease by a factor of 1.1-2.5.

The considered SPFZ falls in the limits 45-60°S. As indicated by computations, the
deviation of ¢ from its mean value ( $pean = 52°) exerts little influence on the
amplitudes of the internal waves and does not exceed 10% of their values, corres-

ponding to @ = ®Ppean-

The dependence of the amplitudes of the internal waves on frequency O of the on-
coming wave is more important. The values of the amplitudes cited above correspond
to O = 7-10"%sec™l; for O= 1.4°107%4 the amplitudes of the internal waves are less
than for & = 7.10-2sec~l. Under the condition 20<f<50 km they are less by 10-30%
and with 50<{<200 they are less by a factor of 1.5-4.5.

It is characteristic that the frontal zone, with its intersection by a barotropic
wave, plays the role of a source of internal waves moving in both directions from
its boundaries. The amplitudes of the waves propagating in the direction of the
barotropic wave are greater than the amplitudes of the internal waves moving in the
opposite direction (reflected waves). In the regions Z~ 200 km their values are
close, whereas in the regions £~ 20 km they differ by a factor of 5-10.
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VARIABILITY OF ENERGY DENSITY OF INTERNAL WAVES WITH DEPTH IN AN INHOMOGENEOUSLY
STRATIFIED OCEAN

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 17 Mar 80) pp 168-174

[Article by V. Z. Dykman and A. A. Slepyshev]

[Text] Abstract: It is shown that with an increase
in the Vaisdld-Brent frequency the energy
density of internal waves decreases as a re-
sult of a limitation of the amplitudes of
waves due to local shear hydrodynamic in-

_ stability. The theoretically derived depen-
dence of the fluxes of the kinetic energy
of internal waves to turbulence on the
V4isala-Brent frequency agrees with experi-
mental data.

The experimental data obtained in the course of implementation of work under the
"Polimode" program on the l4th, 16th, 17th and 18th voyages of the sclentific re-
search vessel "Akademik Vernadskiy" indicate that the density of potential energy
of the internal waves is not constant; it is dependent on local hydrological con-
ditions [1]. For example, in the region of the seasonal thermocline in the "Poli-
mode" polygon with an increase in the Vaisala-Brent frequency N from 3 to 15 cycles
per hour the potential energy of the wave field E decreases by more than an order
of magnitude. On the other hand, the rate of influx of kinetic energy to small-
scale turbulence € , determined by the method described in [3], considerably in-
creases [2].

Thus, it is entirely natural to postulate the existence of an interrelationship
between these two processes. Figure 1 shows the relative distribution of £ and
0‘3 —- the normalized dispersion of vertical displacements, proportional to the
density of potential energy of internal waves. The physical nature of this inter-
relationship is evidently as follows: with an increase in vertical density gradi-
ents as a result of limitation of the amplitude of waves due to the appearance of
local hydrodynamic instability of the wave movement the wave energy decreases.

The energy supply of small-scale turbulence occurs due to the dissipation of wave
energy. It is shown in the article that under definite conditions with an increase
in the Vaisala-Brent frequency the rate of dissipation of wave energy increases
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simultaneously with an increase in the rate of influx of kinetic energy to tur-
bulence.
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Fig. 1.

The presently existing empirical model of the spectrum of internal waves, construct-
ed by Garrett and Munk [6] on the basis of a generalization of experimental data,
does not take into account the dependence of the energy density of waves on local
hydrological conditions, and accordingly, does not give an explanation of its ob-
served inconstancy. The density of potential energy of internal waves is propor-
tional to the normalized dispersion of vertical displacements, which is determined
using the formula [7] L 3

2 2 §max d m

i - v
‘ =7 ] RO A7
Smin

(1)

where ¥ p,x and d min are the dimensions of the "floating" spectral window, equal
to 1 and 0.1 cycle/m respectively; N = N/No; N is the Vaisala-Brunt frequency; Ng
= 1 cycle/hour. The evaluations 0’% when using the Carrett-Munk model in the igdi—
cated spectral interval are 0.1 me, whereas according to experimental data O¢ var-
ies by more than an order of magnitude with a change in the Vaisala-Brunt frequency

_ on the average from 8 to 15 cycles/hour.

What is the reason for the decrease in 0‘3 with an increase in the VQise'{lé'-Brunt

frequency? It should be noted that Garrett and Munk examined an isotropic wave
field in the absence of shear velocity and did not discuss the problem of the
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role of hydrodynamic instability in the formation of the spectrum of internal
waves. Phillips, for a three~layer model of the ocean with a Vlisala-Brunt fre-
quency, experiencing a jump in the thermocline, demonstrated that the wave ampli-
tude decreases in the jump layer due to local hydrodynamic instability. The en-—
orgy density N2aZ is limited, in accordance with [5]

2
N v \?
Vi< -;—';— STv ) (2)
or e~quivalently S —
vt .._-—-—-—4”4‘)9 .
2_ 92\ 42
(#7-9%) 4 3)

The upper boundary for the energy demnsity of internal waves decreases with an in-
crease in N. It will be demonstrated below that under conditions when the Vaisala-
Brent frequency slowly changes in distances comparable with the scales of internal
waves the level at which there is a limitation of their amplitude as a result of the
appearance of local hydrodynamic instability decreases continuously with an in-
crease in N. This means that the density of the potential energy of waves decreas-
es with an increase in the vertical density gradients.

The criterion of local shear hydrodynamic stability has the form
2
A zl = ,>¢—/' (%)
(/oY + (dv/ 22
Using the WKB approximation, it is possible to find the relationship between the

vertical velocity gradients and the amplitude of rises of internal waves. The dis-
turbance of the velocity field and the rise are in this case examined in the form

zmz,6 PFO, oL p(re) 00T, 5

where Eo(z,t)’ and A(;(’,t) are slowly changing functions of the space and time coor-

dinates; B (x,t) is a phase function for which there is satisfaction of the rela-
tionships correct for the wave packets [4],

:_5-,‘_ . %’.--o. (6)
X

. e
Here ki = {k, 8, mjare the components of the wave vector; ,/ is frequency; kp is
the horizontal wavé vector.

The linearized system of equations of hydrodynamics has the form

i?i“'f"'id_f’ %)

'EE."*’r,ﬁ"}?;' )

a—i'"_.g -_Eizﬁ—' _ )
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i-u + -lv + A EN/R
ax ar dz (10)
2
gt g

where u, v, w are the velocity components of wave movement along the x, y and z axes

- (the x-and y-axes lie in the horizontal plane and the z-axis is directed vertically
upward respectively); P is the deviation of pressure from hydrostatic; P is the
deviation of density from the mean; f is the Coriolis parameter.

it follows from equations (4)-(8) in the WKB approximation’that there is a correl-
ation between the amplitude of the rise and the amplitudes of the horizontal velo-
city components

" 2 - ‘ ” -
o Ff—f—’)’— (Vaiepietyge ", (12)
ml

(/{,Z+ f: )Z

y* =

02 2 Z/fz s
(Pt FUT)ee" . s

The value of the amplitude of horizontal velocity hence is expressed through the
amplitude of the rise in the following way:

- 2
m 2 2 »
uut+ v =~ <9 +£7)46¢ . (14)
t2+07? )
The value of the vertical gradient of horizontal velocity is expressed through the

amplitude of the rises p
- du\? W\ | =m 2. 2 2
— | — £ c—— \) -~ .
<dz> 31) 2 Af ChaLL (15)

Substituting the derived expression for the gradient of horizontal velocity through
the amplitude of the rise under the condition of hydrodynamic stability (4), we
obtain the limitation on the level of the density of potential energy of the wave
packets (WP) R e

* 4/1/2 2 .2 B '
ll{f < -;LT (A’/L-Pﬂl ) . (16)

Averaging (16) for the totality of WP in the same spectral range in which the dis-
persions of the normalized rises were experimentally determined, we obtain an ex-
pression for the energy density of internal waves

fm —;; . an

The A constant is determined experimentally. The wzive packets with approach to the
. n.

thermocline, that is, with an increase in the Viisaid-Brunt frequency, lose energy;

the energy losses of the wave packet in a unit time evidently can be used as the
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influx of kinetic energy to turbulence after averaging for the totality of WP.

In order to determine the energy losses of the wave packet in a unit time we will
compute the time derivative along the WP trajectory, that is, the right-hand side
of expression (16).

The differentiation operator has the form

d, d

2= = [ (18)
dt a/f 9e 3x£
where Cg; are the components of the group velocity of the WP. With the use of the
operator (18) we have in mind that in a horizontally homogeneous case we have the

- relationship [9] .
d,/f;,' = 0 z"_!. - éi: _d_?—- .
it Y "ot dm (19)
After differentiation we obtain
7 d 2 o L. it
'a— —o /V " 32 *
} / dt ( 34 )= m ’\/ﬁ,‘z +mi (20)

For wave packets with an upward-directed vertical component of group velocity there
are energy losses and the energy fluxes are positive; however, if the vertical com-
ponent of group velocity is directed downward, the energy density does not decrease
and the energy losses of the WP are nil.

For determining the fluxes of kinetic energy of internal waves to turbulence we
average (19) for the totality of wave packets

A ' L4

ja j‘ A iz

£ / 2 2
Mmin 0 n ‘4 *m

The B constant is experimentally determined.

Figure 2 shows the dependence (17) of energy density on the VAisalad-Brunt frequency.
The A constant was assumed equal to 2-1 m2 (cycles/hour)z.

If in the region of the seasonal thermocline there is a current with a vertical velo-
city shear, after allowance for current velocity shears under conditions of hydro-

dynamic stability (4) the expression for the denmsity of potential energy is trans-
formed to the form

F= ﬂ-ﬁ’-’(”z‘”zz/ ‘) - (22)

Accordingly, in a current with a vertical velocity shear the energy demsity of in-
ternal waves also decreases.

Figure 3 shows the dependence of the fluxes of kinetic:. energy to turbulence on the
V4isd1d-Brunt frequency (theoretical curve). The Viisila-Brunt frequency gradient
d N/Qz was assumed to be constant with depth, equal to 0.4 cycle/hour m; the
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constant B = 3.9-10"%n% hour3.
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Fig. 2. Fig. 3.

However, if JN/d z increases with an increase in the Vaisala-Brunt frequency,

the theoretical curve in the case of large V4isd1a-Brunt frequencles exceeds the
experimental data. The presence of currents with a vertical velocit§ shear will
change the energy influx to turbulence, in particular, with J2U/ 9 z4< 0 the rate
of influx of kinetic energy will be less than was determined in accordance with

(21).

Thus, the derived dependences of the rate of influx of kinetic energy on the condi-
tions of density stratification are confirmed by the cited experimental data.
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EFFECT OF SURFACE FILM ON NATURAL OSCILLATIONS OF FREE BOUNDARY OF FLUID

Sevastopol' TEORETICHESKIYE I EKSPERTMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 19 Jun 80) pp 175-181

{Article by T. M. Pogorelova]

[Text] Abstract: The effect of a film on the at-
tenuation of surface waves is investigated.
The dispersion law was formulated: a pre-
cise solution of the frequency equation is
found. For any values of the parameters of
the problem simple asymptotic representa-
tions are obtained for the dimensionless
complex frequency s as a function of the
wave number £ (and wave lengths L). The de-
pendence of the period of oscillations and
the logarithmic decrement of attenuation
on wave length is found.

In many practical problems in geophysics it is desirable to investigate the in-
fluence of a surface film on the wave movement of a fluid. The studies of V. G.
Levich were devoted to this problem [2]. He examined the problem of the natural
oscillations of a fluid with a surface-active film taken into account. He found ap-
proximate solutions of the frequency equation under definite conditions superposed
on the parameters of the problem.

In addition, studies [1, 3, 4] were devoted to the problem of the natural oscil-
lations of the free boundary of a fluid without a film. In [1] the analytical de-
pendence between the frequency of the free oscillations and the wave .=ngth was
investigated numerically by the Graffe method for a number of values of parameters
of the problem. An analytical dependence of the complex frequency on wave number
was found by E. N. Potetyunko in [4].

In this article we give an analysis of influence of the film on the logarithmic
decrement of attenuation and the wave period for the problem of the natural os-
cillations of a semi-infinite fluid covered with a film. The influence of the
film is "conveyed" into the boundary condition of the problem.

1. Formulation of problem. We will examine free oscillations, periodic along the

Ox-axis, for an infinitely deep two-layer viscous fluid occupying the lower half-
space,
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j‘y‘ﬁz @, +30f gk, dir [0, p=Fpg(h-2).

ot (1.1)
Tt ypenalpogh, dr =0 4 =Bopspsh
with z = 0
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1z 1A 7% Py
"g"ﬂ-f{v‘“gﬂz 5—;2"’4 37?" =4 40 9%+ 24, = 1.2)
” /ééz ilér\ 5_52 _‘i{x)
\ ol ar oz \or Tz
//z-.g;’ l/{x-gx’ i{’/‘% = lf’z ’
Ghe OV %, )
Gz a0 el 2k 2=ee, b=, B0
&, , 9%,
KR ZAVLAT S~ RS L S

Here 06 °(-2 are the coefficients of surface tension at the upper and lower dis-
contlnulties respectively; ’01 /02 are the densities of the upper and lower flu-
id; V are the coefficients of the kinematic viscosities of the upper and
lower %luids, § 1 ; are the disturbances of the free surface and discontinuity.
The origin of coordlnates is taken on the undisturbed discontinuity of the fluids,
the Oz-axis is directed vertically upward; h is the thickness of the upper layer
(h>0).

2. In place of precise satisfaction of the equations of motion of the upper layer
from (1.1) we require their satisfaction in an integral sense: we will integrate
the equations of motion of the upper layer in the thickness h with the boundary
conditions (1.2) and (1.3).

As a result, the initial problem is reduced to the following boundary-value prob-

lem: 07';/ 7 517
[i&‘._iaxg’l+ 72/
Ty 198 a"’l/ a?V /A e
7l ) e
the boundary conditions with z = 0 are
v, 3y,
K +-@9¢2_+2‘u~’ 7= "% dr" < -0 (2.2)

T/ E=lys 2==e. bl
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Here OCO = O(l = 0(2_

3. We will seek solution of system (2.1) in the form

/'(z) et V- f(z)e‘”ﬂ g"f(z)e"”eﬂ. (3.1)

where 8 is the frequency of the natural oscillations; g is the wave number (%=
2 /L; L is the wave length).

Substituting the solution (3.1) into system (2.1), we find
Z e igx ot
=[5 6z Y% &z el
lér L<5 e - —-—2~F >e e ’

ﬂ""ﬂ e ar o (3.2)
C, { ¢
gz=(c eéz—ﬂio-fé’;z)elﬂ-é’ 3 g:ge e e .

2

- Here 4 = 122 +0/ Vo ; Re £ >0. Satisfying the boundary conditions (2.2), we obtain
the following system relating the unknown constants cj and c3:

G ot gs+ 2057 p ) v plos 2y 06 e =
\-76874p 06265 0/%,) =0

Excluding (3.3) in system ¢y and ¢y, we obtain the frequency equation

A TR A A T A S e R T a4

Solving this equation we find the dependence of § on the wave number 5 .

(3.3)

We will carry out a replacement of the variables in (3.4)

- - 2
_ G=5¢%,, (3.5)
where s is dimensionless frequency. Then equation (3.4) assumes the form
<52+7>2-45 + 1/ =0 (3.6)
Here
7 Jaofz"'y bel+s , fi:él:‘{z
¥ 2757 ' o A (3.7)

4. The roots of the dispersion equation (3.6) are algebraic functions of the para-
meter A and are represented in the broadened pldne "6" as a four-valued function

of ‘A [4, 5] )
By =y 4(1-0)" dsoo, b= 24/1 A =0

stk & (4.1)
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Substituting (4.1) into (3.6), we obtain the following representation for the
complex frequency s:

J=d <A, zc 1{-(42) 7. | (442)

/Iza

n-2
7 [ 5
0 =——|C - a, ’ 2 ’
'n Zﬂg n é=ZZ * né]

“Z(120/2, a=0, q=-V75,0=15 a=-185 w3
.1 d'<,Z<.2 +d" .s:Z C;,fﬂ 7

/Ia(7

L_1 4, aa n»2,
G5\, TT a7 +g nk g
c=4’, ¢=8/26, 6=647+2, =44,
. ' .,,-1 n-7 n=2
4'.4“2_5'47 [5 & 2 a;z-hf'."éz/& Gk * ;dédn-i-lj' n3J,
' : k£
/ . d kat
2= .., a‘,’-—? "’Z ak-m‘, , »7;
’JF % m~ (4.4)
.1 6-2 ’
II-J

and the second value aj satisfies the equation

" -0-341 -/'ﬂ,
a"'—[Z/i Q-Cn-k] ’ naZ,

a =-- 7/44, ,4,-47, +7, A= q *a +/;
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7
A= 7 Z
r 44~ (47+1)
B, is a positive root of the equation

£ b1 =0

5. Limiting ourselves to the first terms in formulas (4.2)-(4.4), we have the fol-
lowing simple representations for the complex frequency s:

' L mathy % otk
Jeld<d,, ,@e.;uz/?l -2 ]m.sr:zzg,l -/?,l )' : (5.1)
, 2 (double root); (5.2)
,Z-l’, S’=52 aré ‘7
- - 2 q 1 (5.3
10 . s mdi-T- T
Here >4, 2 e Z(a:-i-da-o-f) A
'@, =1; @,=0,208508; 4=0,882328; 4,=1,71084l.
. ' (5.4)
S g
J 3
I/n.f,-'—l”zjz A Im_.SI-—IInJZ
7 d
R B RN B Y
((’< g,
’ \
y A’PJ,-SEGJZ g,
Fig. 1. Fig. 2.

Figure 1 shows the dependence Re 812 and Im Sl o on the parameter A, For A<Ax s is
a complex parameter which corresponds to the présence of periodic attenuating os-
cillations. If A= A, then s; = sy (double root point) corresponds to an aperiodic
solution; when A> Ax there are two real branches of the roots s1 and sy, which cor-
responds to the presence of aperiodic movements.

1f we return to the wave number & , we see that the critical value of the dimen-
sionless parameter A, corresponds to $x, being a positive root of the equation

L. 52t % et 5.5)
. &5 A3 & £d .

( ¢, -4.299853~105). 3-4'10'7, 4-0.1-'
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Figure 2 shows the dependence of Re 51;2 and Im Sl,2 on the wave number &. With
0< 2< 2% 8 1s a complex value: =5, S; = S5 is a double real root; with 5%,
there are two real branches of the roots S; and Sy,

6. Next we construct the dependence of Re and Im of the frequency s on the wave
length L=27/3. = i " 2 2 h
' o Xg’+a+1)  8rp . (6.1

72
o -
Z.-Z’, s = %=4 -1;

(6.2)
L>1,, ﬂe s, =ﬂ[ 1(2%}%?2]%'2'
I 522*{[%?4—::’—,@] %_ﬁ[mi%@] ’/4.} (6.3)
Here L, is a positive root of the equation  _} /7- 4,7’/% AL+ 5;;-% 0.
l S0 Indp=in s 1072, L= 14610~

R N A AR
IS < L 4 w4
Re S,= 83, ’
Fig. 3 Fig. 4

Figure 3 shows the dependence of the complex frequency s (Re Sy 5, Im 81’2) on the
wave length; Figure 4 shows the dependence of the period of oscillations’on wave

length. When L>L* 7
' 6.2/7/2 2, \1 %
T~2zn [Mfgl:(lTﬁ-er,)] T4
(L% 4R (4028
Comparing the results with the results for free oscillations of a fluid without a
film we find that the film increases the logarithmic decrement of attenuation of

a wave and increases the period of oscillations. The critical length of a wave,
less than which the movement has an aperiodic character, increases.
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EFFECT OF VISCOSITY ON DISSIPATION OF INTERNAL WAVES

Sevastopol' TEORETICHESKIYE I EKSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 23 Mar 80) pp 182-188

[Article by N. P. Levkov]

[Tex*] Abstract: In the first approximation a
study was made of the influence of hori-
zontal and vertical exchange of momentum
on the dissipation of internal waves in
a stratified ocean with a real density dis-
tribution. It has been established that in
the region of the short-wave spectrum of
frequencies the first approximation is in-
adequate; in the case of long waves there
is a similarity with the law of dissipation
of surface waves and it can be assumed that
the first approximation to all intents and
purposes is a precise solution of the prob-
tem.

In [4] The author presented a theoretical investigation of the influence of hor-
izontal and verical exchange of momentum on the dissipation of surface and inter-
nal waves in a stratified ocean. It was assumed that the solution of the "ideal"
problem is known. But in [4] it was impossible to find even one fundamental solu-
tion Wy of equation (6) in a general case. Two methods are now known for overcom-
ing this difficulty.

First, having an analytical expression for the density value, it is possible to
find approximate solutions of this equation outside the turning points and in

their neighborhood; then asymptotic splicing of these solutions is carried out

[7]. Proceeding along these lines, it is necessary to approximate the density meas-
urement data by the function fﬁ(z) and then find an approximate solution of the
problem.

On the other hand [3,6], the ocean can be regarded as N layers of fluid [0, H] =
(o, Hl) + (Hl’ Hpl + ... + [Hy_1» Hyl. The density measurement data for the entire
depth of the real ocean can be approximated by some continuous function for which
in each of N sectors it is easy to obtain one precise sought-for solution W: (for
example, for /3- = ijO exp kiz). Satisfying the boundary conditions for attachment
at the bottom, the equality o% the velocity and stress components at the discontin-
uities and the absence of stresses at the free surface, we obtain a solution of

the formulated problem.
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each of N layers is described [4] by the system of equa-
a, A £y - rid) g- - W0
Ay'+ A gi+ ¢ ) 9”7 TFrT ’

[
z, 1.1
A, W+ 24, 7{’_' wos (6-rih —ridy+ AL )" (-2rt7) L0+ )

The movement of a fluid in
tions ’

. R o N 25,2 (-‘l ’>7>=0
+r2 (—Ld’+)”l¢ +4‘§’-.4'§"‘5')”""‘" cor ?*-‘g? ’
the boundary conditions have the form
W W = gm0 = ~ when z = 0;

WymWiy s W= Wi s Yy =Yiots

A im W - 26 A, Onrig + A imril; ==

=A, imWs, = 20 A On T Yot h im T tHy s
(2)

A inW! +2uoAmrig + Ainrik=
=l,£nhg—ﬁ’,+zwdlzmr2yj’,,+l‘inrzb{,-,,,
4 (™ % W) - (= 24 Prarth) Mo rih N, - ba0ir Y =
2\ ‘8’ /i z L) 2t
' . !
""qz("//'f/""g %f/)‘(“ i ‘*Zﬂz"z""‘z“’l) Wiyt "2'44-5- Koy =
—4Wiibriy., vhen 2=/ </-=/_:_”_,);

A im N"—éw Aonrip + 4imrthmbin WY+ 20 A 6mrty' 4 inri W = g,
! i . !
N A W)+ (0tw2ioh risioris YW= (gravitria -§) W~

‘40}262"1?’:0 when Zs/'/vzﬁ.

The general solution of the equations of motion in each case represents the total-
ity of (7) and (11) [4]. We will limit ourselves to the first approximation. Satis-

fying the boundary conditionms, we obtain the determinant Al of the order of 6N.

Making some identical transforms with its rows and expanding into a series in pow-
and 62, we reduce the finding of rg, r3 and ry to computation of the

ers of ©
Jacobian gieterminant A of the order 2N.
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Here the notations in [4] have been retained.
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Fig. 1. Change in decrement of attenuation due to horizontal exchange.
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5 o0

Fig. 2. Change in decrement of attenuation due to vertical exchange.
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Fig. 3. Fig. 4.

Here W.O is one of_ the solutions of equation (6) [4]; Wy are the viscous additives
to thid solution; W, are the viscous additives to another solution of equation (6)
in the j-th layer; agj are elements of the determinant A not equal to zero; the prime
denotes the derivative of z. The integration constants are selected in such a way
that with z = H;_j the integrals are equal to zero, Then A= Jyy. Substituting this
value into equation (3), we obtain an equation for determining tHe wave number (or
numbers) rg and the components rj and ry of the decrement of attenuation a’

1t is known [5] that under the conditions 0> 2, 62 + g P'/,°>O for the entire
depth in the entire fluid one surface wave arises which does not attenuate with

distance, and with min ( Jz+9_§)<0,
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in addition to the surface wave, another set of nonattenuating internal waves
develops. In the presence of vertical and horizontal exchange of momentum, all
the waves attenuate with distance.

For the purpose of finding the value of the decrement of attenuation ¥ we made
computations using density measurement data [1] (Fig. 1,2) and [2] (Figures 3,
4). The figures demote the numbers of the internal modes to which the curves cor-—
respond; the fictitious parts of rj and r, are represented in n~l, In this case

r= 7t a2

(j is the number of the mode) kj = 5-103 for curve 4 and kg = 104 in all the re-
maining cases.

An analysis of the computations shows that for clarifying the influence of ver-
tical exchange A, on the dissipation of internal waves a first approximation of
the expansion in ¢, is inadequate since in the short-wave region: it tends to O.
The j-th mode attaifnis its maximum with a wavelength A, ~ BH/Y j. For longer
waves the ro value changes proportionally to (1 + 1) ;Z/E;_. Depending on the
stratification, different modes attenuate with distance differently. Cases are
possible when the lower modes (the waves are longer) attenuate more rapidly than
the higher modes. It can only be assumed, by analogy with surface waves [4],
that with AH/HJ’IO ry will be virtually the precise value of the decrement of
attenuation 5 caused by the presence of exchange Aj.

What is the influence of horizontal exchange A; on the dissipation of internal
waves and is a first approximation adequate for clarifying the qualitative and
quantitative aspects of this influence? With an increase in frequency, regard-
less of the mode number, in the case of long waves the ry value increases as (2

and is equal approximately to
AL (5""'4’_’2,
26 (02 -4 wt)

in the case of short waves the order of the increase increases and r; has an os-
cillatory character. In all probability, as in the case of surface waves [4],

for a clarification of the influence of the horizontal exchange of momentum A,
on the dissipation of internal waves it is adequate to use a first approximation.
An exhaustive answer can be given only after comparison of the results of this
work with a second approximation or with a precise solution of the formulated
problem.

Ty
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FREE OSCILLATIONS OF A STRATIFIED VISCOUS FLUID

Sevastopol' TEORETICHESKIYE I EXSPERIMENTAL'NYYE ISSLEDOVANIYA POVERKHNOSTNYKH I
VNUTRENNIKH VOLN in Russian 1980 (manuscript received 23 Jan 80) pp 189-197

[Article by N. P. Levkov]

[Text] Abstract: A study was made of the influence
of vertical and horizontal exchange of momentum
on the dissipation of waves in a stratified
fluid of constant depth. The solution is found
by expansion of the sought-for functions into a
series in two small parameters with an accuracy
to values of the second order of magnitude in-
clusive. A comparison of the derived expressions
with the precise solution of the problem is
presented in the example of a homogeneous ocean.

The characteristics of internal waves in an ideal stratified fluid of constant
depth have been studied quite well [2, 9, 10]. A study was also made of the in-
fluence of viscosity on the dissipation of surface and internal waves in the

case of a piecewise-constant [5, 7, 11] or exponental [4, 8] density distribution.

In this article a study is made of the influence of vertical A, and horizontal
A, exchange of momentum on the dissipation of waves in an unbounded basin of
constant depth H with an arbitrary stratification. It is assumed that the coef-
ficients A, and Aj are constant.

Within the framework of a linear theory, with Coriolis force taken into account,
the motion of the fluid is described by the equations

¢4 - Zov= ";[’e +l (uxx * uyy)"' (!u uz)z *ﬁz “,'v] ’

4

o 1)
yt-.-fwu-p[-@ + AV * hy) * (00); + 4 ”3]"

%*9{’%[’/@ - CRUME CLARS wz] '
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with the boundary conditions

u=v=w=0with z =0, (2)

Aom=0, p-Zum=pgs. g=w vith = -

Z
P> P is the density of the fluid in an undisturbed state;

3 AL
P* is the dynamic addlt ive of density; H

=P -9 dez;

P is dynamic pressure.

We will seelg a solution of equations (1) in the form of harmonic functions exp[i
(mx + ny -6t)]. We introduce <Iﬂ in such a way that

4 /
u=z-r’il w’—?wa’ay, yei 5, wduo’m'p, _p=-gf W, G F:J:T N
(_— "/\V/*i—w +u)..5$4-’ ."zcm.pn,,

~
The prime denotes differentiatlon for z. Then the system (1) assumes the form

4o 4 é—g;/""*(w'-" [ Jo= 2w’ =0,
7 LY/ 2’ pl /
A ;zf /5"'/7-”‘% '47P>W+(LJ Zr ;@ﬁm- (4)

: +-7:’(¥zi+r’ A +/£7—',f )w bo Lﬂrz(}ﬂ - = 9”) J

The system of two equations (4) is easily reduced to one sixth-degree differential
equation with variable coefficients

2 | .
/42(W”+ 4»")4- 4 (AZ_ w'e "y w')+4w”+/{w/+gw-a (4a)
The '»nundary conditions (2) are transformed to

Y=w=vw"=0withz=0,
(P'-/{, w's 4?‘2}?- 4217'»\([0’-7'%-2)':4) w' -

'TW~4QLOJ/"¢ ﬂwithz= . (5)

With AL = AZ =0
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f’ 590
) g r v -0 (6)

We will assume that one solution of equation (6) w1g 1is known, which is not equal
to zero with z = 0. Then the second fundamental solution is

|2

We will select the integration constant in such a way that wyy becomes equal to

zero with z = 0. Expanding the sought- for function w and the wave number r into

a series [1] in two small parameters H\/g_H and £, = [A, /4 fgH, we find
B two fundamental solutions of equation (gia) It is possible to find these solutions

with any degree of accuracy. We will limit ourselves to the second approximation.
Assume

%
2,06 )
rery e srgneengg v g +UED,

- where & = max( 8 »€5 ). Substituting expressions (7) into equation (4a) and equat-
ing the coeff1c1ents with equal degrees of E and we obtain five differen-
tial equations for finding the viscous additives to tlgxe fundamental solutions of

equation (6)
v P 2 ‘?ﬂ/ﬁ /& (,('-.-;/-:-5),

WS =T =, % (8)
where
r, 4/‘2//‘/9—/‘7 ng 2 oF 2_%‘_7/;,1 o’zy”.;.f;'/j
/I;"/Z’F; * (‘55: 7 07")" A
/P
162-270‘72' 7-4a? ¢’
iG] P A
- T g,y < 25 Wz
y LY pom p
s LA dCE A w1
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The zero approximations of the two solutions are denoted by w.lO and Woqe Then
from (8) we find [3]

Z z
Y '“90§wfa/l/"/odz’ %(S,";’o/?*ﬁalz' (9)

Here the subscript j is additionally introduced; j = 1 corresponds to w10» j=2 -
Wone
20

- Thus, in the second approximation there are two fundamental solutions Wy and Wy of
equation (4a). We seek the lacking four fundamental solutions of this equation
with a small parameter and a higher derivative [6] in the form

‘f.z-Z,(z,a,.&,)erpZ%fL@ (j=1+4), (10)

where the functions Zl 2(z, 81, 82) are stipulated in the form of series in powers
of 81 and €,. Substituting the series (10) into equation (4a) and comparing the
coefficients with identical powers of £’l and &2, in the second approximation

1 —-—
oz =5 PG5 (1)

where

A5 SN G e

ZA 24 27
z
-- / ~ Jplﬂz 5@/)2'4
°§ 4_6@'§[ﬂ - 2'/022"'454(’1"‘;*5‘;)*
54009 _LANF 1 N 2win A
At el RS

Substituting expressions (11) into the differential equations (4) and équating the
coefficients with the lower powers of &, it is easy to confirm that (11) are so-

lutions of (4). The expressions for ¢, corresponding to the fundamental solutions
wj+2’ assume the form
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where

A ' 54 ) 2 2 he
gj&--qi{,{ 20" SAGY Ly 40(77' 'fl%o

G\ 2 4p? ¢ Zad?
+\/_/7:z 5/—(,0)2 /’ r/A. ,
b4 §[ j‘/— -‘é: J ) ]d}

?[0) - dm 2.

With an accuracy to higher-order values, the general solution of the formulated
problem is as follows:

s
wad CW .
Cog
Satisfying the boundary conditions and equating the coefficients of expansion of
the determinant into a series in powers of & to zero, we obtain equations for de-

termining the wave number r,, and also rj, rp, rs3, "4 and rc, the fictitious parts
of which give the decrement of attenuation of a wave “with t e length A= 27 /T,

Lwy =0 la(o"’-4o’)a-/a-/-gr’, [v‘/” -2grrw, =lw,,

y "
/" 4t d an
2. "Jﬂﬁ(f" 40)’ * — -—)
W 40’)\/#/_(&’ +L)
28O, OF W, p, <,
’f"+4
L' 21,5 o - 205 W (-3 g ) 5

ATt OGO | ,//77;77’ (0‘-21.) 5+za>
2664 pO) W@ 7 "o Zo’w ),

[ (DXL, w2975 1) = g Oy, - 29579} 0.

“29(rr 4 )y =297, (G My * ) +

L w2975 %% =

7 2%
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L) o‘-?w 5+’20>
26w,(0) .

YA AR o)+ ’ﬂ%ﬁ[%%(fm
x<i£'°¢££)l' J?‘n’ (;lz Jt:) n/: ’;‘J)’='Z7,

N éz (’5’%2 +2r; '3’_”;)"’

- /50 T g Z
1 L W= 907w, *27;7; + 25w, )+ L(Gim, + 25, ) +
. 2altnsts 4-0’0" LE2
,z(ar = with z = H.

The values w;p are found from equation (8). The values of the velociﬁy components
u, v and w with an accuracy -to the arbitrary constant C in the first approxlma-

tion are determined by the expressions

w= L]~ Ln )i -(mem - (m-m) +

+(¢m+n)F(z)+(cm /z)/-’ (z)J
A [(m + —m) —(m m)F(Z) (m+m)F (z)+

7
. +(in- M)F(Z)+(m+m)/-' (z)] (13)
) e &+ )i/, @, Fm"F(z) £Q
' ’ C{W Ziaéolp(O) (0) ‘//ZLz, o{, ce, oL E

_~(o‘s2w)c/1/a,; (H-2)" R
. 4@ ~ 2600) w,,(0) clzﬁﬁ,’,/'/ ’ 5“() /_ oz "/zﬁr:

It can be seen (13) that the influence of viscosity on the velocity field is re-
flected most substantially at the bottom and at the free surface. The second and
third terms of the expressions for the horizontal velocity components u and v rep-
resent, in fact, a mathematical description of the change in the velocity in the
bottom boundary layer. The last terms of the first two expressions (13) determine
the boundary layer at the free surface. With a high horizontal exchange value it
can attaln values comparable to the bottom boundary layer.

We will examine the simplest case. Assume that = const. Then the solutions of
equations (6) and the viscous additive to it (8) will be

| w’.a'g eXpﬂzl; - W20 -:?% kaﬂz, A
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Vo (et =) - e P (pechpz=ch ),

where 04
£ r 4 %["”f(rf)-‘ff] vl

The equations for determining the wave number L) and the first approximation rp

and ry (12) assume the form
98 z‘ﬁph’ -4,

é££(5+za‘)///— A-46°, +r5<ﬁ -a//) g, @

sty 5l (e G gh) < & 47 1

i j;r" 9 /72/15’

For long waves A . 2, 20 [‘ (54-.76)) +(5-20)34’
r= /_97_ , r;-cr; = 7 (f )——‘7—]7—452/7,9 (15a)

6/ 4R 2:H6° [H Z(M)i".////— 6-20%6-25) 150
=7 Vg %=

for short waves 75- P = y

g

9°/Zexp (45 H9)

T - T ‘|6 A,
7 z P 1/9—‘12,,

For the purpose of explaining the influence of higher-order terms on the decrement
of attenuation d we made computations of the values r] and rp using formulas (14)
_ with &)= 0, H = 4000 m (Fig. 1) and H = 100 m (Fig. 2); the dashed curves 1 and 5

correspond to A = 200 cm?-sec -1, k 104, curve 2 A = 2 cm?-sec™ -1, k
= 105; curves 3 and 6 -= Ap =50 A, = 104 cm -sec"1 k = 104, curve 4 -=- 4y = 5-
107 A, = 106cm:Z *sec 1 k = 10%. The solid curves represent the change in the

decrement of attenuatlon corresponding to the same parameters, but computed using
precise formulas derived in [5]; the dotted curves are plotted using the approxim-
ate formulas (15a) with ro H<1l or (15b) with rg H> 1.
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Fig. 2.

Comparing the solid, dashed and dotted curves we see that in the region of long
waves they all coincide. However, in the region of short waves with A; >> A, they
also coincide (curves 3, 4, 6); with A, = A, the values of the dashed and dotted
curves are half as great as the true ¥ value. This is attributable to the fact
that for short waves the contributions of the and A, values to the ¢ value are
equivalent. However, numerical computations were made taking into account only the
first approximation of the expansion in the small parameter E€,, which with ry H>>
1 becomes equal to zero. In the range of waves with a length o% the order of sev-
eral depths, regardless of the relationship between Aj and A,, the approximation
(14) seems quite good; the short-wave and long-wave approximations (15) give some-
what exaggerated results.

In connection with the above, it is desirable to examine the second approximation
of the expansion in the small parameter £ . For short waves

2
ooy O 20
15T b
The r, and rg5 values, regardless of the length of the surface waves, exert no ap-
preciable influence on the value of the decrement of attenuation.

Thus, the first approximation for £, and the second for €, give a virtually pre-
cise solution of the formulated problem.
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